Magic of 7

Algebra Level 4

Let y R y \in \mathbb{R} . Find the last digit of y y if y = 7 ( x 7 + 7 x x + 7 + 7 ) 700 \large{y= \left \lfloor 7 \left(\frac{\sqrt{|x| - 7} + \sqrt{7 - |x|}}{x + 7} + 7\right)^{700} \right \rfloor}

5 6 2 4 1 7 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 16, 2016

For y = 7 ( x 7 + 7 x x + 7 + 7 ) 700 y= \left \lfloor 7 \left(\dfrac{\sqrt{|x| - 7} + \sqrt{7 - |x|}}{x + 7} + 7\right)^{700} \right \rfloor to be real, x = 7 |x| = 7 else either x 7 \sqrt{|x|-7} or 7 x \sqrt{7-|x|} is unreal and for x 7 + 7 x x + 7 \dfrac{\sqrt{|x| - 7} + \sqrt{7 - |x|}}{x + 7} to be defined, x = 7 x=7 .

Therefore, we have:

y = 7 ( x 7 + 7 x x + 7 + 7 ) 700 = 7 ( 0 + 0 7 + 7 + 7 ) 700 = 7 701 y 7 701 (mod 10 ) As 7 and 10 are coprimes, we can apply Euler’s totient theorem. 7 4 × 175 + 1 (mod 10) 7 ϕ ( 10 ) 1 (mod 10) and totient function ϕ ( 10 ) = 4 7 (mod 10) \begin{aligned} y & = \left \lfloor 7 \left(\dfrac{\sqrt{|x| - 7} + \sqrt{7 - |x|}}{x + 7} + 7\right)^{700} \right \rfloor \\ & = \left \lfloor 7 \left(\dfrac{\sqrt{0} + \sqrt{0}}{7 + 7} + 7\right)^{700} \right \rfloor \\ & = 7^{701} \\ \Rightarrow y & \equiv \color{#3D99F6}{7}^{701} \text{ (mod } \color{#3D99F6}{10}) \quad \quad \small \color{#3D99F6}{\text{As 7 and 10 are coprimes, we can apply Euler's totient theorem.}} \\ & \equiv 7^{\color{#3D99F6}{4} \times 175+1} \text{ (mod 10)} \quad \quad \small \color{#3D99F6}{7^{\phi (10)} \equiv 1 \text{ (mod 10) and totient function }\phi (10) = 4} \\ & \equiv \boxed{7} \text{ (mod 10)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...