Magic of infinity

Algebra Level 3

y y is real number

a 2 + a + a 2 + a + a 2 + a + a 2 + a + a 2 + a = y \sqrt { { a }^{ 2 }+a+\sqrt { { a }^{ 2 }+a+\sqrt { { a }^{ 2 }+a+\sqrt { { a }^{ 2 }+a+\sqrt { { a }^{ 2 }+a\dots } } } } } =y

Find y 2 y^{2} when a 2 = 10000 a^{ 2 } = 10000


The answer is 10201.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 17, 2016

Solution 1 : \underline{\text{Solution 1}}:

Ramanujan equation on nested radical is as follows:

x + n + a = a x + ( n + a ) 2 + x a ( x + n ) + ( n + a ) 2 + ( x + n ) a ( x + 2 n ) + ( n + a ) 2 + ( x + 2 n ) . . . \small x+n+a = \sqrt{ax + (n+a)^2 + x\sqrt{a(x+n) + (n+a)^2 + (x+n)\sqrt{a(x+2n) + (n+a)^2 + (x+2n)\sqrt{...}}}}

We note that: y = a 2 + a + a 2 + a + a 2 + a + . . . y = \sqrt{a^2+a+\sqrt{a^2+a+\sqrt{a^2+a+\sqrt{...}}}} , x = 1 \Rightarrow x = 1 , n = 0 n = 0 and a = a a = a . Therefore, y = 1 + 0 + a = 101 y 2 = 10 1 2 = 10201 y = 1+0+a = 101\quad \Rightarrow y^2 = 101^2 = \boxed{10201}

Solution 2 : \underline{\text{Solution 2}}:

y = a 2 + a + a 2 + a + a 2 + a + . . . = a 2 + a + y y 2 = a 2 + a + y y 2 y a 2 a = 0 y 2 y 10100 = 0 ( y 101 ) ( y + 100 ) = 0 y = 101 Since y > 0 y 2 = 10201 \begin{aligned} y & = \sqrt{a^2+a+\sqrt{a^2+a+\sqrt{a^2+a+\sqrt{...}}}} \\ & = \sqrt{a^2+a+y} \\ \Rightarrow y^2 & = a^2 + a + y \\ y^2 - y - a^2 - a & = 0 \\ y^2 - y - 10100 & = 0 \\ (y-101)(y+100) & = 0 \\ \Rightarrow y & = 101 \quad \text{Since } y > 0 \\ \Rightarrow y^2 & = \boxed{10201} \end{aligned}

Roger Erisman
Mar 17, 2016

Square both sides.

If a^2 = 10000, then a = 100

y^2 = 10000 + 100 + y

y^2 - y -10100 = 0

(y-101)*(y + 100) = 0

y = 101 or y = -100 but y must be positive because it is a square root.

y^2 = 101^2 = 10201

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...