Magic square - 2.0

Probability Level pending

The figure below shows a 3 × 3 3\times3 magic square.

If e = 2017 e=2017 , then find the maximum value of the sum of the nine numbers ( a , b , c , d , e , f , g , h , i a,b,c,d,e,f,g,h,i ).

Note: a + b + c = d + e + f = g + h + i = a + d + g = b + e + h = c + f + i = a + e + i = c + e + g a+b+c=d+e+f=g+h+i=a+d+g=b+e+h=c+f+i=a+e+i=c+e+g


The answer is 18153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Áron Bán-Szabó
Jul 29, 2017

If the sum of three numbers in the same row/column/diagonal is S S , then

( a + b + c ) + ( c + f + i ) + ( i + g + h ) + ( a + d + g ) = 4 S = 2 a + 2 c + 2 g + 2 i + b + d + f + h = 2 ( a + i ) + 2 ( c + g ) + ( b + h ) + ( d + f ) = 2 ( S e ) + 2 ( S e ) + ( S e ) + ( S e ) = 6 ( S e ) = 6 S 6 e (a+b+c)+(c+f+i)+(i+g+h)+(a+d+g)=4S=2a+2c+2g+2i+b+d+f+h=2(a+i)+2(c+g)+(b+h)+(d+f)=2(S-e)+2(S-e)+(S-e)+(S-e)=6(S-e)=6S-6e

4 S = 6 S 6 e 4 S + 6 e = 6 S 6 e = 2 S e = 2 S 6 = S 3 \begin{aligned} 4S & = 6S-6e \\ 4S+6e & = 6S \\ 6e & = 2S \\ e & = \dfrac{2S}{6} \\ & =\dfrac{S}{3} \end{aligned}

So S = 3 S 3 = 3 e = 3 2017 = 6051 S=3*\dfrac{S}{3}=3*e=3*2017=6051 and the sum of the nine numbers is 3 S = 18153 3S=\boxed{18153} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...