Magic square - 3.0

The figure below shows a 3 × 3 3\times3 magic square.

If e = 7 e=7 and a 2 + b 2 + c 2 = 161 a^2+b^2+c^2=161 , then find the maximum value of g h + h i + g i gh+hi+gi

Note : a + b + c = d + e + f = g + h + i = a + d + g = b + e + h = c + f + i = a + e + i = c + e + g \small a+b+c=d+e+f=g+h+i=a+d+g=b+e+h=c+f+i=a+e+i=c+e+g


The answer is 140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Áron Bán-Szabó
Jul 29, 2017

If the sum of three numbers in the same row/column/diagonal is S S , then

( a + b + c ) + ( c + f + i ) + ( i + g + h ) + ( a + d + g ) = 4 S = 2 a + 2 c + 2 g + 2 i + b + d + f + h = 2 ( a + i ) + 2 ( c + g ) + ( b + h ) + ( d + f ) = 2 ( S e ) + 2 ( S e ) + ( S e ) + ( S e ) = 6 ( S e ) = 6 S 6 e (a+b+c)+(c+f+i)+(i+g+h)+(a+d+g)=4S=2a+2c+2g+2i+b+d+f+h=2(a+i)+2(c+g)+(b+h)+(d+f)=2(S-e)+2(S-e)+(S-e)+(S-e)=6(S-e)=6S-6e

4 S = 6 S 6 e 4 S + 6 e = 6 S 6 e = 2 S e = 2 S 6 = S 3 \begin{aligned} 4S & = 6S-6e \\ 4S+6e & = 6S \\ 6e & = 2S \\ e & = \dfrac{2S}{6} \\ & =\dfrac{S}{3} \end{aligned}

So S = 3 S 3 = 3 e = 3 7 = 21 = g + h + i S=3*\dfrac{S}{3}=3*e=3*7=21=g+h+i .

Now we will prove that a 2 + b 2 + c 2 = g 2 + h 2 + i 2 a^2+b^2+c^2=g^2+h^2+i^2 . We can use the figure below.

Now a 2 + b 2 + c 2 = a 2 + b 2 + ( S a b ) 2 = S 2 + 2 a 2 + 2 b 2 2 a S 2 b S + 2 a b a^2+b^2+c^2=a^2+b^2+(S-a-b)^2=S^2+2a^2+2b^2-2aS-2bS+2ab and g 2 + h 2 + i 2 = ( a + b S 3 ) 2 + ( 2 S 3 a ) 2 + ( 2 S 3 b ) 2 = S 2 + 2 a 2 + 2 b 2 2 a S 2 b S + 2 a b g^2+h^2+i^2=\left(a+b-\dfrac{S}{3}\right)^2+\left(\dfrac{2S}{3}-a\right)^2+\left(\dfrac{2S}{3}-b\right)^2=S^2+2a^2+2b^2-2aS-2bS+2ab

So we proved that a 2 + b 2 + c 2 = g 2 + h 2 + i 2 a^2+b^2+c^2=g^2+h^2+i^2 .

Now ( g + h + i ) 2 = 2 1 2 = 441 = g 2 + h 2 + i 2 + 2 g h + 2 g i + 2 h i = a 2 + b 2 + c 2 + 2 ( g h + g i + h i ) = 161 + 2 ( g h + g i + h i ) 2 ( g h + g i + h i ) = 441 161 = 280 g h + g i + h i = 280 2 = 140 \begin{aligned} (g+h+i)^2 & = 21^2 = 441 \\ & = g^2+h^2+i^2+2gh+2gi+2hi \\ & = a^2+b^2+c^2+2(gh+gi+hi) \\ & = 161+2(gh+gi+hi) \\ \ \\ \ \\ \Longrightarrow 2(gh+gi+hi) & = 441-161 \\ & = 280 \\ gh+gi+hi & =\dfrac{280}{2}=\boxed{140} \end{aligned}

Note: Therefore the answer is 140 \boxed{140} , which is possible:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...