Magnetic field of a rotating sphere

A sphere with the radius R = 10 cm R = 10 \, \text {cm} is homogeneously charged with the charge distribution ρ ( r ) = { Q 4 3 π R 3 r R 0 r > R \rho(\vec r) = \begin{cases} \frac{Q}{\frac{4}{3} \pi R^3} & r \leq R \\ 0 & r > R \end{cases} where Q = 1 C Q = 1 \, \text{C} is the total charge. The sphere rotates at the frequency f = 100 Hz f = 100 \, \text {Hz} around its own axis.

What is the absolute value of the magnetic field H | \vec H | caused by the rotation in the center of the sphere?

Specifies the result in units of ampere per meter.


The answer is 500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Markus Michelmann
Jun 16, 2018

The charges move on circles aroud the z axis with the velocity v = 2 π f r e φ \vec v = 2 \pi f r_\perp \vec e_\varphi , where r = r sin θ r_\perp = r \sin \theta denotes the distance from the ration axis. The currents density yields j = ρ v = ρ ω r sin θ e ϕ \vec j = \rho \vec v = \rho \omega r \sin \theta \vec e_\phi with the charge desinty ρ = Q 4 3 π R 3 \rho = \frac{Q}{\frac{4}{3} \pi R^3} of the sphere. The magnetic field at the point r 0 \vec r_0 results according to the Biot-Savart law: H ( r 0 ) = 1 4 π j ( r ) × ( r 0 r ) r 0 r 3 d V \vec H(\vec r_0) = \frac{1}{4 \pi} \int \frac{\vec j(\vec r) \times (\vec r_0 - \vec r)}{|\vec r_0 - \vec r|^3} dV First, we calculate the cross product j ( r ) × ( r 0 r ) = ρ ω r sin θ ( sin ϕ cos ϕ 0 ) × ( r cos ϕ sin θ r sin ϕ sin θ r cos θ ) = ρ ω r 2 sin θ ( cos ϕ cos θ sin ϕ cos θ sin θ ) \begin{aligned} \vec j(\vec r) \times (\vec r_0 - \vec r) &= -\rho \omega r \sin \theta \left( \begin{array}{c} -\sin \phi \\ \cos \phi \\ 0 \end{array} \right) \times \left( \begin{array}{c} r \cos \phi \sin \theta \\ r \sin \phi \sin \theta \\ r \cos \theta \end{array} \right) \\ &= -\rho \omega r^2 \sin \theta \left( \begin{array}{c} \cos \phi \cos \theta \\ \sin \phi \cos \theta \\ - \sin \theta \end{array} \right) \end{aligned} Now we can calculate the magnetic field by volume integration in spherical coordinates: H ( 0 ) = 1 4 π 0 2 π 0 π 0 R ρ ω r 2 sin θ r 3 ( cos ϕ cos θ sin ϕ cos θ sin θ ) r 2 sin θ d r d θ d ϕ = ρ ω 4 π 0 π 0 R r sin 2 θ ( 0 0 2 π sin θ ) d r d θ = ρ ω 2 0 R r d r 0 π sin 3 θ d θ e z = Q ω 8 3 π R 3 R 2 2 4 3 e z = Q f 2 R e z \begin{aligned} \vec H(0) &= - \frac{1}{4 \pi} \int_0^{2 \pi} \int_{0}^\pi \int_0^R \frac{\rho \omega r^2 \sin \theta}{r^3} \left( \begin{array}{c} \cos \phi \cos \theta \\ \sin \phi \cos \theta \\ - \sin \theta \end{array} \right) r^2 \sin \theta dr d\theta d\phi \\ &= - \frac{\rho \omega}{4 \pi} \int_{0}^\pi \int_0^R r \sin^2 \theta \left( \begin{array}{c} 0 \\ 0 \\ - 2 \pi \sin \theta \end{array} \right) dr d\theta \\ &= \frac{\rho \omega}{2} \int_0^R r dr \int_{0}^\pi \sin^3 \theta d\theta \, \vec e_z \\ &= \frac{Q \omega}{\frac{8}{3} \pi R^3} \cdot \frac{R^2}{2} \cdot \frac{4}{3}\,\vec e_z \\ &= \frac{Q f}{2 R} \,\vec e_z \end{aligned} The absolute value of the magnetic field thus results H = Q f 2 R = 1 100 2 0.1 A m = 500 A m |\vec H| = \frac{Q f}{2 R} = \frac{1 \cdot 100}{2 \cdot 0.1} \,\frac{\text{A}}{\text{m}} = 500 \,\frac{\text{A}}{\text{m}}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...