Magnetic Flux (5-25-2021)

Consider the following closed curve in the x y xy plane (curve x y xy coordinates are in meters).

r ( θ ) = 1 + 1 2 sin ( 4 θ ) x ( θ ) = r ( θ ) cos θ y ( θ ) = r ( θ ) sin θ z = 0 0 θ 2 π \begin{array} { r c l } r(\theta) &=& 1 + \frac{1}{2} \sin(4 \theta) \\ x(\theta) &=& r(\theta) \, \cos \theta \\ y(\theta) &=& r(\theta) \, \sin \theta \\ z &=& 0 \\ 0 \leq &\theta &\leq 2 \pi\end{array}

There is a magnetic flux density B \vec{B} throughout all of space. The field is perpendicular to the x y xy plane.

B = ( B x , B y , B z ) = ( 0 , 0 , 3 x 2 ) Wb m 2 \vec{B } = (B_x , B_y, B_z) = (0,0, 3 x^2) \,\, \frac{\text{Wb} }{\text{m}^2}

Determine the absolute value of the magnetic flux (in Wb \text{Wb} ) through the interior surface bounded by the curve.

S B d S \iint_S \vec{B} \cdot \vec{d S}


The answer is 4.1785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
May 25, 2021

First, the magnetic vector potential is computed using the relation:

× A = B \nabla \times \vec{A} = \vec{B} A z y A y z = 0 \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}=0 A x z A z x = 0 \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}=0 A y x A x y = 3 x 2 \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}=3x^2

From the above relations, with a little bit of trial and error, it is seen that the following vector satisfies the above relations.

A = 0 i ^ + x 3 j ^ + 0 k ^ \vec{A} = 0 \ \hat{i} + x^3 \ \hat{j} + 0 \ \hat{k}

Now, by applying Stokes' theorem

Φ = S B d S = S ( × A ) d S = C A d R \Phi= \int \int_{S}\vec{B} \cdot d\vec{S} =\int \int_{S} (\nabla \times \vec{A}) \cdot d\vec{S} = \oint_{C} \vec{A} \cdot d\vec{R}

R = r ( θ ) cos θ i ^ + r ( θ ) sin θ j ^ \vec{R} = r(\theta) \cos{\theta} \ \hat{i} + r(\theta) \sin{\theta} \ \hat{j} d R d θ = d d θ ( r ( θ ) cos θ ) i ^ + d d θ ( r ( θ ) sin θ ) j ^ \frac{d\vec{R}}{d\theta} = \frac{d}{d\theta} \left(r(\theta) \cos{\theta}\right) \ \hat{i} + \frac{d}{d\theta} \left( r(\theta) \sin{\theta}\right) \ \hat{j}

Plugging in the given parameterization:

Φ = C A d R = 0 2 π ( x 3 ( θ ) d d θ ( r ( θ ) sin θ ) ) d θ \implies\Phi= \oint_{C} \vec{A} \cdot d\vec{R} = \int_{0}^{2 \pi}\left(x^3(\theta) \ \frac{d}{d\theta} \left( r(\theta) \sin{\theta}\right) \right) \ d\theta

Simplifying the integrand leads to:

Φ = C A d R = 0 2 π ( 1 + 0.5 sin 4 θ ) 3 cos 3 θ ( 2 sin θ cos 4 θ + cos θ ( 1 + 0.5 sin 4 θ ) ) d θ \Phi=\oint_{C} \vec{A} \cdot d\vec{R}=\int_{0}^{2 \pi} \left(1 + 0.5 \sin{4\theta}\right)^3 \cos^3{\theta} \left(2 \sin{\theta} \cos{4\theta} + \cos{\theta} \left(1 + 0.5 \sin{4\theta}\right) \right) \ d\theta

Φ = 681 π 512 4.178563666200487 \boxed{\Phi= \frac{681 \pi}{512} \approx 4.178563666200487}


Shorter method:

B = 3 r 2 cos 2 θ k ^ \vec{B} = 3r^2\cos^2{\theta} \ \hat{k} d S = r d r d θ k ^ d\vec{S} = r \ dr \ d\theta \ \hat{k}

Φ = S B d S = 0 2 π 0 1 + 0.5 sin 4 θ ( 3 r 2 cos 2 θ ) r d r d θ 4.178563666200487 \Phi = \int \int_{S}\vec{B} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{1+0.5\sin{4\theta}} \left(3r^2\cos^2{\theta} \right) \ r \ dr \ d\theta \approx 4.178563666200487

In hindsight, this problem could have been solved without invoking the concept of the vector potential. I have added a much shorter solution at the end of my already posted solution.

Karan Chatrath - 2 weeks, 3 days ago

Greetings! I could use a helpful hint to compute the curve of intersection in your latest problem. I am struggling to solve it.

Karan Chatrath - 5 days, 17 hours ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...