Magnetism and Mechanics

Consider two parallel wires each of mass 2 kg 2 \text{ kg} connected to two frictionless rails separated by a distance of 6 m , 6 \text{ m}, as shown. One of them carries a current of 4 A 4 \text{ A} and the other carries a current of 5 A , 5 \text{ A}, both in the same direction. The wires are free to slide over the rails.

Now, the wires start moving from rest under the effect of their mutual magnetic fields. If the initial distance between the wires is 12 m , 12\text{ m}, find the velocity of the wire carrying 4 A 4 \text{ A} when the distance is reduced to half of its initial value.

The answer is of the form α × 10 4 m/s . \alpha \times {10}^{-4} \text{ m/s}. Find the value of α \alpha correct to two decimal places.


The answer is 16.32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
May 31, 2018

Relevant wiki: Magnetic Effects of Current

Consider a particular position such that the wires are separated by a distance 2 x 2 x from each other as shown.

Now, consider a small portion of length d y dy at a distance of y y from the midpoint of the wire of the right. Now, the force acting due to the left wire on this portion is given by B I d y B I dy where B B is the magnetic field intensity produced by the left wire on that point. Applying the magnetic field intensity due to a finite wire = μ 0 I 4 π d ( sin ( A ) + sin ( B ) ) \dfrac{\mu_{0} I}{4\pi d} \left(\sin{(A)} + \sin{(B)}\right)

d F = μ 0 × 4 4 π ( 2 x ) ( ( 3 y ) 4 x 2 + ( 3 y ) 2 + ( 3 + y ) 4 x 2 + ( 3 + y ) 2 ) × 5 d y 0 F d F = 3 3 μ 0 × 4 4 π ( 2 x ) ( ( 3 y ) 4 x 2 + ( 3 y ) 2 + ( 3 + y ) 4 x 2 + ( 3 + y ) 2 ) × 5 d y F = 5 μ 0 2 π x [ 0 6 t d t 4 x 2 + t 2 + 0 6 z d z 4 x 2 + z 2 ] ( Let 3 - y = t and 3 + y = z ) F = 5 μ 0 2 π x [ 0 36 d a 2 4 x 2 + a + 0 36 d b 2 4 x 2 + b ] ( Let t 2 = a and z 2 = b ) F = 5 μ 0 π x ( 4 x 2 + 36 2 x ) \begin{aligned} dF & = \dfrac{\mu_{0}\times 4}{4 \pi (2x)} \left(\dfrac{(3-y)}{\sqrt{4x^2 + {(3-y)}^2}} + \dfrac{(3+y)}{\sqrt{4x^2 + {(3+y)}^2}}\right) \times 5 dy\\ \\ \int_{0}^{F} dF & = \int_{-3}^{3} \dfrac{\mu_{0}\times 4}{4 \pi (2x)} \left(\dfrac{(3-y)}{\sqrt{4x^2 + {(3-y)}^2}} + \dfrac{(3+y)}{\sqrt{4x^2 + {(3+y)}^2}} \right) \times 5 dy\\ \\ F & = \dfrac{5 \mu_{0}}{2 \pi x} \left[ \int_{0}^{6} \dfrac{t dt}{\sqrt{4x^2 + t^2}} \ + \ \int_{0}^{6} \dfrac{z dz}{\sqrt{4x^2 + z^2}} \right] \ {\color{#20A900}{\left(\text{Let 3 - y = t and 3 + y = z}\right)}} \\ \\ F & = \dfrac{5\mu_{0}}{2 \pi x} \left[ \int_{0}^{36} \dfrac{da}{2\sqrt{4x^2 + a}} + \int_{0}^{36} \dfrac{db}{2\sqrt{4x^2 + b}} \right] \ {\color{#20A900}{\left( \text{Let} \ t^2 \ \text{= a and} \ z^2 \ \text{= b} \right) }} \\ \\ F & = \dfrac{5 \mu_{0}}{\pi x} \left( \sqrt{4x^2 + 36} - 2x \right) \end{aligned}

Now, this force provides the necessary acceleration for the motion of the wires. Since the complete setup is symmetric, the wires are always at equal distance from the mid-plane between them. Since F = m v d v d x F = m v \dfrac{dv}{dx}

2 v d v d x = 5 μ 0 π x ( 4 x 2 + 36 2 x ) 0 v 2 v d v = 6 3 ( 5 μ 0 π x 4 x 2 + 36 10 μ 0 π ) d x v 2 = 6 3 5 μ 0 π x 4 x 2 + 36 d x + 30 μ 0 π = arctan ( 2 ) p i 4 5 μ 0 × 6 ( sec θ ) 3 d θ π tan θ Let x = 3 tan θ = 30 μ 0 π [ arctan ( 2 ) π 4 d θ sin θ cos 2 θ + 1 ] = 30 μ 0 π [ arctan ( 2 ) π 4 d θ sin θ cos 2 θ + 1 ] = 30 μ 0 π [ arctan ( 2 ) π 4 sin θ d θ ( 1 cos 2 θ ) cos 2 θ + 1 ] = 30 μ 0 π [ 1 1 5 1 2 d u u 2 ( 1 u 2 ) ] ( Let u = cos θ ) = 30 μ 0 π [ 1 u 1 2 log ( 1 + u 1 u ) ] 1 5 1 2 + 30 μ 0 π v = 12 × 10 6 [ 2 + 1 5 + log ( ( 5 + 1 ) ( 2 1 ) 2 ) ] v = 16.32 × 10 4 m / s \begin{aligned} 2 v \dfrac{dv}{dx} & = \dfrac{5 \mu_{0}}{\pi x} \left( \sqrt{4x^2 + 36} - 2x \right)\\ \\ \int_{0}^{v} 2 v dv & = \int_{6}^{3} \left( \dfrac{5 \mu_{0}}{\pi x} \sqrt{4x^2 + 36} - \dfrac{10 \mu_{0}}{\pi} \right) dx \\ \\ v^2 & = \int_{6}^{3} \dfrac{5 \mu_{0}}{\pi x} \sqrt{4x^2 + 36} dx + \dfrac{30 \mu_{0}}{\pi}\\ \\ & = \int_{\arctan{(2)}}^{\frac{pi}{4}} \dfrac{5\mu_{0} \times 6{(\sec{\theta})}^{3} d\theta}{\pi \tan\theta} \ {\color{#20A900}{\text{Let x =} \ 3\tan\theta}} \\ \\ & = \dfrac{30 \mu_{0}}{\pi} \left[ \int_{\arctan{(2)}}^{\frac{\pi}{4}} \dfrac{d\theta}{\sin\theta {\cos}^2\theta} \ + \ 1 \right] \\ \\ & = \dfrac{30 \mu_{0}}{\pi} \left[ \int_{\arctan{(2)}}^{\frac{\pi}{4}} \dfrac{d\theta}{\sin\theta {\cos}^2\theta} \ + \ 1 \right] \\ \\ & = \dfrac{30 \mu_{0}}{\pi} \left[ \int_{\arctan{(2)}}^{\frac{\pi}{4}} \dfrac{\sin\theta d\theta}{(1 - {\cos}^2\theta){\cos}^2\theta} \ + \ 1 \right] \\ \\ & = \dfrac{30 \mu_{0}}{\pi} \left[1 - \int_{\frac{1}{\sqrt{5}}}^{\frac{1}{\sqrt{2}}} \dfrac{du}{u^2(1 - u^2)} \right] \ {\color{#20A900}{\left( \text{Let u =} \cos\theta \right)}} \\ \\ & = \dfrac{30 \mu_{0}}{\pi} \left[\dfrac{1}{u} - \dfrac{1}{2}\log\left(\dfrac{1+u}{1-u}\right) \right]_{\frac{1}{\sqrt{5}}}^{\frac{1}{\sqrt{2}}} + \dfrac{30 \mu_{0}}{\pi} \\ \\ \implies v & = \sqrt{12 \times {10}^{-6} \left[\sqrt{2} + 1 - \sqrt{5} + \log\left(\dfrac{\left(\sqrt{5} + 1\right) \left(\sqrt{2} - 1 \right)}{2}\right)\right]}\\ \\ \implies v & = {\color{#3D99F6}{\boxed{16.32}}} \times {10}^{-4} m/s \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...