Magnetism + Calculus + Mechanics = Megatulics

Let an Super Conducting Square Loop ( having negligible resistance ) and has Self inductance "L" and has mass of "m" and side length l l is released from rest in the gravity from the height "H" at time t=0.There is an infinitely Long current carrying wire which is in Same Plane of that of Square Loop and current I 0 { I }_{ 0 } flowing in it.

Then Find The Velocity of the square loop when it is at height of H 4 \frac { H }{ 4 } from the wire.


Details and assumptions

m = 1 k g L = 10 h e n r y l = 1 m I 0 = 10 7 A m p . H = 2 m g = 9.8 m / s 2 \bullet \quad m=1\quad kg\\ \bullet \quad L=10\quad henry\\ \bullet \quad l=1m\\ \bullet \quad { I }_{ 0 }={ 10 }^{ 7 }\quad Amp.\\ \bullet \quad H=2\quad m\\ \bullet \quad g=9.8\quad m/{ s }^{ 2 } .

This is Original
This is Part of this Set Mixing of Concepts


The answer is 5.439.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Oct 20, 2014

Well Now I feel very Tired Since It Takes approximately my 45 minutes to post it on brilliant. Anyway Solution Begins Here :

Diagram Diagram

Let any time t=t net induced emf in is ' E i n d { E }_{ ind } ' So

E i n d = I i n d R { E }_{ ind }={ I }_{ ind }R .

Now Loop Is Super Conducting So R 0 R\quad \approx \quad 0 .

E i n d = 0 \Rightarrow { \quad E }_{ ind }\quad =\quad 0 .

So according To Faraday's Law of induction.

d ϕ m d t = 0 \Rightarrow \quad \frac { -d{ \phi }_{ m } }{ dt } =\quad 0 .

ϕ m , n e t , a t t = t = ϕ m , n e t , a t t = 0 ϕ n e t = ϕ e x t e r n a l m a g . f i e l d + ϕ s e l f c u r r e n t \displaystyle{\therefore \quad { { \phi }_{ m } }_{ ,net,\quad at\quad t=t }\quad =\quad { { \phi }_{ m } }_{ ,net,\quad at\quad t=0 }\\ \\ \because { \quad \phi }_{ net }\quad =\quad { \phi }_{ external\quad mag.\quad field }\quad +{ \quad \phi }_{ self\quad current }\quad } .

Now Let at time t=t current in loop is I i n d { I }_{ ind } And Loop is at an height of y from the wire So Flux produced due to Self induction Phenomena will be :

( ϕ s e l f c u r r e n t ) t = t = L × I i n d ( 1 ) \displaystyle{{ { \quad (\phi }_{ self\quad current }) }_{ t=t }\quad =\quad L\times { I }_{ ind }\quad \longrightarrow (1)} .

Now For Calculating Flux from external magnetic field( mag. field of infinite wire) will be calculated by considering Rectangular strip ( green coloured shown in figure) of length ' l l ' and width dr which is at an height of ' r ' And at that instant of time Loop is at an height of y from wire :

( ϕ e x t e r n a l m a g . f i e l d ) t = t = r = y r = y + l B e x t . d A cos π = r = y r = y + l μ 0 I 0 2 π r . l d r = μ 0 I 0 l 2 π ln y + l y ( 2 ) \displaystyle{{ { (\phi }_{ external\quad mag.\quad field }) }_{ t=t }=\quad \int _{ r=y }^{ r=y+l }{ { B }_{ ext } } .dA\cos { \pi } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad -\int _{ r=y }^{ r=y+l }{ { \frac { { \mu }_{ 0 }{ I }_{ 0 } }{ 2\pi r } .ldr } } \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad -\frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi } \ln { \frac { y+l }{ y } } \quad \longrightarrow (2)} .

Now net flux is constant So :

ϕ m , n e t , a t t = t = ϕ m , n e t , a t t = 0 L I i n d μ 0 I 0 l 2 π ln y + l y = μ 0 I 0 l 2 π ln 2 l + l 2 l L I i n d μ 0 I 0 l 2 π ln y + l y = μ 0 I 0 l 2 π ln 3 2 I i n d = μ 0 I 0 l 2 π L ln 2 ( y + l ) 3 y ( 3 ) \displaystyle{\because \quad { { \phi }_{ m } }_{ ,net,\quad at\quad t=t }\quad =\quad { { \phi }_{ m } }_{ ,net,\quad at\quad t=0 }\\ \Rightarrow \quad L{ I }_{ ind }\quad -\quad \frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi } \ln { \frac { y+l }{ y } \quad } =\quad -\frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi } \ln { \frac { 2l+l }{ 2l } } \\ \\ \Rightarrow \quad L{ I }_{ ind }\quad -\quad \frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi } \ln { \frac { y+l }{ y } \quad } =\quad -\frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi } \ln { \frac { 3 }{ 2 } } \\ \Rightarrow \quad { I }_{ ind }\quad =\quad \frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi L } \ln { \frac { 2(y+l) }{ 3y } \quad } \quad \longrightarrow (3)} .

Now Draw FBD of the loop at that instant of time. and use Newtons laws of motion

F n e t = m × a n e t \displaystyle{{ F }_{ net }\quad =\quad m\quad \times \quad { a }_{ net }} .

And You will see That net magnetic Force will acts in upwards and gravitational force in downward Direction.

m g F m a g = m ( v d v d y ) \displaystyle{mg\quad -{ \quad F }_{ mag }\quad =m(-\frac { vdv }{ dy } )\quad } .

Here I used the fact that

a = v d v d x ( y e s w i t h v e s ) \displaystyle{a\quad =\quad -\frac { vdv }{ dx } \quad \quad \quad \quad (\quad \because \quad y\downarrow es\quad with\quad v\uparrow es\quad )} .

So

m g ( I i n d × l × B e x t ) = m v d v d x m g ( I i n d × l × μ 0 I 0 2 π ( 1 y 1 y + l ) = m v d v d x \displaystyle{mg\quad -\quad ({ I }_{ ind }\quad \times \quad l\quad \times \quad { B }_{ ext })\quad =-m\frac { vdv }{ dx } \quad \\ mg\quad -\quad ({ I }_{ ind }\quad \times \quad l\quad \times \quad \frac { { \mu }_{ 0 }{ I }_{ 0 } }{ 2\pi } (\frac { 1 }{ y } \quad -\quad \frac { 1 }{ y+l } )\quad =-m\frac { vdv }{ dx } \quad } .

Now Put all values which we have calculated already So the Differential equation becomes:

Note

here in solution I used frequently that

H=2 l l

You check this according to data given in question.

( μ 0 I 0 l 2 π ) 2 1 m L y = 2 l y = l / 2 ( 1 y 1 y + l ) ln 2 ( y + l ) 3 y d y g y = 2 l y = l / 2 d y = 0 v v d v \displaystyle{{ (\frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi } })^{ 2 }\frac { 1 }{ mL } \int _{ y=2l }^{ y=l/2 }{ (\frac { 1 }{ y } } \quad -\quad \frac { 1 }{ y+l } )\ln { \frac { 2(y+l) }{ 3y } } dy\quad \quad -\quad g\int _{ y=2l }^{ y=l/2 }{ dy } \quad =\int _{ 0 }^{ v }{ vdv } \quad } .

Consider the integral E = y = 2 l y = l / 2 ( 1 y 1 y + l ) ln 2 ( y + l ) 3 y d y \displaystyle{E\quad =\quad \int _{ y=2l }^{ y=l/2 }{ (\frac { 1 }{ y } } \quad -\quad \frac { 1 }{ y+l } )\ln { \frac { 2(y+l) }{ 3y } } dy} .

Now Substitute the ln 2 ( y + l ) 3 y = z \displaystyle{\ln { \frac { 2(y+l) }{ 3y } } \quad =\quad z} .

So this integral converts into :

( z d z = z 2 2 = ( ln 2 ( y + l ) 3 y ) 2 2 E = [ ( ln 2 ( y + l ) 3 y ) 2 2 ] 2 l l / 2 E = ( ln 2 ) 2 2 \displaystyle{(-\int { zdz } \quad =\quad -\frac { { z }^{ 2 } }{ 2 } \quad =\quad -\quad \frac { { (\ln { \frac { 2(y+l) }{ 3y } } ) }^{ 2 } }{ 2 } \\ \Rightarrow \quad E\quad =\quad -\quad { \left[ \frac { { (\ln { \frac { 2(y+l) }{ 3y } } ) }^{ 2 } }{ 2 } \right] }_{ 2l }^{ l/2 }\\ \\ \Rightarrow \quad \quad E=\quad \frac { -{ (\ln { 2 } ) }^{ 2 } }{ 2 } } .

So putting this integral in original equation we get an simply integrate The Rest part we get velocity

v = 3 g l ( μ 0 I 0 l 2 π ) 2 ( ln 2 ) 2 m L \displaystyle{v\quad =\quad \sqrt { 3gl\quad -\quad { (\frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi } })^{ 2 }\frac { { (\ln { 2 } ) }^{ 2 } }{ mL } \quad } } .

Now put the Values we get answer i.e

v = 5.4 m \s \\ v\quad =\quad 5.4 m\s .

Q.E.D

It could have been much easier if you had used conservation of energy. The answer is 3 g l ( μ 0 I 0 l ln 2 ) 2 4 π 2 m L = 5.4 \sqrt{3gl - \dfrac{(\mu_{0}I_{0}l \ln 2)^2}{4 \pi^2 mL}} = 5.4

Use

1 2 m v 2 = m g 3 H / 4 1 2 L i 2 \dfrac{1}{2} mv^2 = mg*3H/4 - \dfrac{1}{2}Li^2

jatin yadav - 6 years, 7 months ago

Log in to reply

how will u get the value of current in your equation for conservation of energy

Priyesh Pandey - 6 years, 3 months ago

Log in to reply

change in flux=self inductance*current

NILAY PANDE - 6 years, 2 months ago

i think the effect of magnetic force is negligible since by simple conservation of energy result= sqrt(3gh/2)=5.42m/s

Priyesh Pandey - 6 years, 3 months ago

Log in to reply

Did same bro!!

Ashutosh Sharma - 3 years, 4 months ago

@Deepanshu Gupta your pain is nothing compared to mine , i spent 1 hour on it(solving+writing monstrous latex!), i read it wrong , i thought you want time to be calculated , OH MAN ! when i read you want velocity , my face just brightened up and smile prevailed over it :P now for the solution , d 2 h d t 2 = g F m a g . \frac { { d }^{ 2 }h }{ d{ t }^{ 2 } } =g-{ F }_{ mag. } here the current can be calculated as d ϕ d \phi = d i di * \L \L and then the force on current formula can be used , just to check you can see what F m a g . { F }_{ mag. } comes , it would be { I }_{ ind }\quad = \frac { { \mu }_{ 0 }{ I }_{ 0 }l }{ 2\pi L } \ln { \frac { 2(y+l) }{ 3y } \times \frac { { \mu }_{ 0 }{ I }_{ 0 } }{ 2\pi } (\frac { 1 }{ y } \quad -\quad \frac { 1 }{ y+l) } , this can be equated to m d v d x m \cfrac {dv}{dx} , so , you were saved of that cumbersome double integral , you would have had to calculate ! :P thanks god !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...