Make 1 1

I pick three integers between 1 1 to 10 10 inclusive. How many distinct, unordered sets of three numbers are there with which I cannot generate 1 1 using the standard operators + , , × , ÷ +,-,\times,\div and parentheses?

Here are some examples:

  • With the numbers 1 , 4 , 7 1,4,7 , I could do 1 = 1 1=1 (with no need to use all the numbers).
  • With 2 , 3 , 5 2,3,5 , I could do 3 2 = 1 3-2=1 (with no need to use all the numbers).
  • With 2 , 5 , 7 2,5,7 , I could do ( 2 + 5 ) ÷ 7 = 1. (2+5)\div 7=1.
  • With 2 , 4 , 9 2,4,9 , I could do 9 2 × 4 = 1. 9-2\times4=1.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arjen Vreugdenhil
Mar 15, 2018

There are ( 10 3 ) = 120 \binom{10}{3} = 120 subsets of three elements of \{1,\dots,10} . However, we can quickly reduce the number we need to check by removing:

All sets containing 1. (See the first example.)

All sets containing two consecutive integers. For instance, since 8 7 = 1 8 - 7 = 1 , any set of the form { 7 , 8 , x } \{7,8,x\} can be used to make 1.

This leaves any subset of three elements of { 2 , , 10 } \{2,\dots,10\} without consecutive numbers. There are only ( 7 3 ) = 35 \binom{7}{3} = 35 of these sets. We reduce them further.

All sets of the form { x , y , x + y } \{x,y,x+y\} ; { x , y , x + y ± 1 } \{x,y,x+y\pm 1\} . Examples: 2 + 7 9 = 1 ; ( 2 + 7 ) 8 = 1 ; 10 ( 2 + 7 ) = 1. \frac{2+7}9 = 1;\ \ \ \ (2 + 7) - 8 = 1;\ \ \ \ 10 - (2 + 7) = 1. This rules out 21 further sets: 2 , 4 , 6 2 , 5 , 7 2 , 6 , 8 2 , 7 , 9 2 , 8 , 10 2 , 4 , 7 2 , 5 , 8 2 , 6 , 9 2 , 7 , 10 3 , 5 , 8 3 , 6 , 9 3 , 7 , 10 4 , 6 , 10 3 , 5 , 7 3 , 6 , 8 3 , 7 , 9 3 , 8 , 10 4 , 6 , 9 4 , 7 , 10 3 , 5 , 9 3 , 6 , 10 \begin{array}{cccccc} 2,4,6 & 2,5,7 & 2,6,8 & 2,7,9 & 2,8,10 & \\ 2,4,7 & 2,5,8 & 2,6,9 & 2,7,10 & & \\ 3,5,8 & 3,6,9 & 3,7,10 & & 4,6,10 & \\ 3,5,7 & 3,6,8 & 3,7,9 & 3,8,10 & 4,6,9 & 4,7,10 \\ 3,5,9 & 3,6,10 & & & & \end{array}

All sets of the form { x , y , x y } \{x,y,xy\} ; { x , y , x y 1 } \{x,y,xy-1\} , { x , y , x y + 1 } \{x,y,xy+1\} . This rules out 4 more: ( 2 , 4 , 7 ) ; 2 , 4 , 8 ; 2 , 4 , 9 ; 2 , 5 , 9 ; 2 , 5 , 10 (2,4,7);\ 2,4,8;\ 2,4,9;\ 2,5,9;\ 2,5,10

All sets of the form { x 1 , y , x y } \{x-1,y,xy\} ; { x + 1 , y , x y } \{x+1,y,xy\} . For instance: 6 10 2 = 1. 6 - \frac{10}{2} = 1. This rules out 3 more: 3 , 5 , 10 ; 2 , 4 , 10 ; 2 , 6 , 10. 3,5,10;\ 2,4,10;\ 2,6,10.

After all this, we have 35 - 21 - 4 - 3 = 7 \boxed{7} sets left; they are: 4 , 6 , 8 ; 4 , 7 , 9 ; 4 , 8 , 10 ; 5 , 7 , 9 ; 5 , 7 , 10 ; 5 , 8 , 10 ; 6 , 8 , 10. 4,6,8;\ \ 4,7,9;\ \ 4,8,10;\ \ 5,7,9;\ \ 5,7,10;\ \ 5,8,10;\ \ 6,8,10. It is not difficult to check that these cannot be reduced to 1 with the standard operators.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...