Make me an integral

Calculus Level 3

lim n ( 1 a + n + 1 2 a + n + 1 3 a + n + + 1 n a + n ) \lim_{n\to\infty}\left(\frac{1}{a+n}+\frac{1}{2a+n}+\frac{1}{3a+n}+\ldots+\frac{1}{na+n}\right)

Find the "closed form result" of the limit above.

Here, a > 0 a\gt 0 is an arbitrary constant such that the expression inside the limit is defined.

π e ln ( a ) \pi^e\cdot \ln(a) π a \pi^a ln ( a + 1 ) a \dfrac{\ln(\sqrt{a}+1)}{a} ln ( a + 1 ) a \dfrac{\ln(a+1)}{a} ln ( a + 2 ) a \dfrac{\ln(a+2)}{a} e a e^a a a log 10 ( a + 1 ) a \dfrac{\log_{10}(a+1)}{a}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akiva Weinberger
May 9, 2015

But I don't want to make you an integral!

Substitute a x ax for n n .

= 1 a lim x ( 1 a + a x + 1 2 a + a x + + 1 a 2 x + a x ) \displaystyle\phantom{=\frac1a}\lim_{x\to\infty}\left(\frac1{a+ax}+\frac1{2a+ax}+\dotsb+\frac1{a^2x+ax}\right)

= 1 a lim x ( 1 1 + x + 1 2 + x + + 1 a x + x ) \displaystyle=\frac1a\lim_{x\to\infty}\left(\frac1{1+x}+\frac1{2+x}+\dotsb+\frac1{ax+x}\right)

= 1 a lim x ( H a x + x H x ) \displaystyle=\frac1a\lim_{x\to\infty}\left(H_{ax+x}-H_x\right)\quad where H x = 1 + + 1 x H_x=1+\dotsb+\frac1x

Since H x ln x + γ H_x\approx \ln x+\gamma as x x grows larger, we have:

= 1 a lim x ( ( ln ( a x + x ) γ ) ( ln ( x ) γ ) ) = 1 a lim x ln ( a x + x x ) \displaystyle=\frac1a\lim_{x\to\infty}\big((\ln(ax+x)-\gamma)-(\ln(x)-\gamma)\big)=\frac1a\lim_{x\to\infty}\ln\left(\frac{ax+x}x\right)

= 1 a lim x ln ( a + 1 ) = ln ( a + 1 ) a \displaystyle=\frac1a\lim_{x\to\infty}\ln(a+1)=\boxed{\dfrac{\ln(a+1)}a}

Tanishq Varshney
Apr 18, 2015

lim n r = 1 n 1 a r + n \displaystyle \lim_{n\to \infty} \sum^{n}_{r=1}\frac{1}{ar+n}

lim n r = 1 n 1 n ( 1 a r n + 1 ) \displaystyle \lim_{n\to \infty} \sum^{n}_{r=1} \frac{1}{n}(\frac{1}{a\frac{r}{n}+1})

0 1 1 a x + 1 . d x \displaystyle \int^{1}_{0} \frac{1}{ax+1}.dx

1 a l n ( a x + 1 ) 0 1 \frac{1}{a} ln(ax+1) |^{1}_{0}

After applying limits

l n ( a + 1 ) a \frac{ln(a+1)}{a}

What is the name of this method ? @Tanishq Varshney

Refaat M. Sayed - 6 years, 1 month ago

Log in to reply

This method actually uses the Riemann sum form of a definite integral. We have, for a Riemann-integrable function f ( x ) f(x) on [ 0 , b ] [0,b] ,

lim n k = 1 b n f ( k n ) = 0 b f ( x ) d x \large\lim_{n\to\infty}\sum_{k=1}^{bn}f\left(\frac{k}{n}\right)=\int\limits_0^b f(x)\,\mathrm dx

where b Z + b\in\Bbb{Z^+} and n = b h , h 0 n=\dfrac{b}{h}~,~h\to 0

Prasun Biswas - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...