Makes me wonder

Algebra Level 5

If a , b , c , d a, b, c, d are real values that satisfy the system of equations:

a b c + a b + b c + c a + a + b + c = 71 abc + ab +bc + ca + a + b + c = 71
b c d + b c + c d + d b + b + c + d = 191 bcd + bc + cd + db + b + c + d = 191
c d a + c d + d a + a c + c + d + a = 95 cda + cd + da + ac + c + d + a = 95
d a b + d a + a b + b d + d + a + b = 143 dab + da + ab + bd + d + a + b = 143

Evaluate the value of a b c d + a + b + c + d abcd + a + b + c + d .


The answer is 227.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Abhimanyu Singh
Apr 6, 2014

We can factorize the equations-

( a + 1 ) ( b + 1 ) ( c + 1 ) = 72 ( b + 1 ) ( c + 1 ) ( d + 1 ) = 192 ( c + 1 ) ( d + 1 ) ( a + 1 ) = 96 ( d + 1 ) ( a + 1 ) ( b + 1 ) = 144 \boxed { (a+1)(b+1)(c+1)=72\\ (b+1)(c+1)(d+1)=192\\ (c+1)(d+1)(a+1)=96\\ (d+1)(a+1)(b+1)=144 }

And equations can be reformed as-

( a + 1 ) ( b + 1 ) ( c + 1 ) ( d + 1 ) = 72 ( d + 1 ) ( b + 1 ) ( c + 1 ) ( d + 1 ) ( a + 1 ) = 192 ( a + 1 ) ( c + 1 ) ( d + 1 ) ( a + 1 ) ( b + 1 ) = 96 ( b + 1 ) ( d + 1 ) ( a + 1 ) ( b + 1 ) ( c + 1 ) = 144 ( c + 1 ) \boxed { (a+1)(b+1)(c+1)(d+1)=72(d+1)\\ (b+1)(c+1)(d+1)(a+1)=192(a+1)\\ (c+1)(d+1)(a+1)(b+1)=96(b+1)\\ (d+1)(a+1)(b+1)(c+1)=144(c+1) }

So, we get, 192 ( a + 1 ) = 96 ( b + 1 ) = 144 ( c + 1 ) = 72 ( d + 1 ) 192(a+1)=96(b+1)=144(c+1)=72(d+1)
8 ( a + 1 ) = 4 ( b + 1 ) = 6 ( c + 1 ) = 3 ( d + 1 ) \Rightarrow 8(a+1)=4(b+1)=6(c+1)=3(d+1)

As we know the Lowest Common Multiple of (8, 4, 6, 3) = 24

So, 8 ( a + 1 ) = 24 a = 2 4 ( b + 1 ) = 24 b = 5 6 ( c + 1 ) = 24 c = 3 3 ( d + 1 ) = 24 d = 7 \boxed { 8(a+1)=24\Rightarrow a=2\\ 4(b+1)=24\Rightarrow b=5\\ 6(c+1)=24\Rightarrow c=3\\ 3(d+1)=24\Rightarrow d=7 }

Thus a b c d + a + b + c + d = 227 \boxed { abcd+a+b+c+d=227 }

correct

Max B - 7 years, 2 months ago

A 13 year old wondering about such thing....it happens only in Asia

Murlidhar Sharma - 7 years, 2 months ago

Log in to reply

Where that comment came from? regardless ...

Abhimanyu Singh - 7 years, 2 months ago

Log in to reply

I meant that at the age of 13 i used to wonder about cricket not algebra and the guy posting this is 13

Murlidhar Sharma - 7 years, 2 months ago

Wrote a C program for it . LOL :p

Sachin Malhotra - 7 years, 2 months ago

Log in to reply

Can you give me the code?I am interested.

Sanchayapol Lewgasamsarn - 7 years, 2 months ago

Log in to reply

If you want to write a code for this problems, you can find it in the repository ..

Makes me wonder.c

Abhimanyu Singh - 7 years, 2 months ago

Can you please explain the part where you used the LCM to find out each term's value?

Alexander Lemere - 7 years, 2 months ago

Log in to reply

L e t s c o n s i d e r a n a r b i t r a r y p r o b l e m 2 a = 3 b = 4 c , f o r p o s i t i v e i n t e g e r s a , b a n d c . A s s u m e t h a t t h e s e e q u a l i t y e q u a l s s o N 2 a = 3 b = 4 c = N a = N 2 , b = N 3 , c = N 4 A s a i s i n t e g e r s o N m u s t b e d i v i s i b l e b y 2. A s b i s i n t e g e r s o N m u s t b e d i v i s i b l e b y 3. A s c i s i n t e g e r s o N m u s t b e d i v i s i b l e b y 4. S o y o u c a n s i m p l y g o f o r N = 2 × 3 × 4 = 24 , b u t w h e n w e t a l k a b o u t s m a l l e s t p o s s i b l e v a l u e o f N , w e m u s t g o f o r L C M . 2 = 1 × 2 3 = 1 × 3 4 = 1 × 2 × 2 S o , N = L C M ( 2 , 3 , 4 ) = 1 × 2 × 2 × 3 = 12. O b v i o u s l y L C M ( a , b , c ) i s d i v i s i b l e b y a , b a n d c . N o w a = 6 , b = 4 , c = 3 I n g e n e r a l a = 6 k , b = 4 k , c = 3 k , f o r k = 1 , 2 , 3 , . . . . Lets\quad consider\quad an\quad arbitrary\quad problem\quad 2a=3b=4c,\quad for\quad positive\quad integers\\ a,\quad b\quad and\quad c.\\ \\ Assume\quad that\quad these\quad equality\quad equals\quad so\quad N\quad \Rightarrow \quad 2a=3b=4c=N\\ \Rightarrow \quad a=\frac { N }{ 2 } ,b=\frac { N }{ 3 } ,c=\frac { N }{ 4 } \\ \\ As\quad a\quad is\quad integer\quad so\quad N\quad must\quad be\quad divisible\quad by\quad 2.\\ As\quad b\quad is\quad integer\quad so\quad N\quad must\quad be\quad divisible\quad by\quad 3.\\ As\quad c\quad is\quad integer\quad so\quad N\quad must\quad be\quad divisible\quad by\quad 4.\\ \\ So\quad you\quad can\quad simply\quad go\quad for\quad N=2\times 3\times 4=24,\quad but\quad when\quad we\quad talk\quad about\\ smallest\quad possible\quad value\quad of\quad N,\quad we\quad must\quad go\quad for\quad LCM.\\ \\ 2=1\times 2\\ 3=1\times 3\\ 4=1\times 2\times 2\\ \\ So,\quad N=LCM(2,3,4)=1\times 2\times 2\times 3=12.\\ \\ Obviously\quad LCM(a,b,c)\quad is\quad divisible\quad by\quad a,\quad b\quad and\quad c.\\ Now\quad a=6,b=4,c=3\\ In\quad general\quad a=6k,b=4k,c=3k,\quad for\quad k=1,2,3,....

Abhimanyu Singh - 7 years, 2 months ago

Log in to reply

Thank you!

Alexander Lemere - 7 years, 2 months ago

wOw amazing....

Satsky Guard - 7 years, 2 months ago

really solved it like that .......but really nice problem..:D

Indrashis Haldar - 7 years, 2 months ago

Nice work. Thanks.

Niranjan Khanderia - 7 years, 2 months ago

Scholar !!

Siddhesh Sharma - 7 years, 1 month ago
Faraz Masroor
Mar 31, 2014

Factor each equation to (a+1)(b+1)(c+1)=72 etc. Multiply them all and take the cube root to get (a+1)(b+1)(c+1)(d+1)=576. Now you can use this and your previous equations to find a+1 etc. and thus a, you will get a=2 b=5 c=3 d=7 so the answer is 227.

Solved the same way...

Vishal Sharma - 7 years, 2 months ago

Nice work.

Niranjan Khanderia - 7 years, 2 months ago

so good!!!

Thư Hồ - 7 years, 1 month ago
Anirban Karan
Apr 10, 2014

Adding 1 in each equation we get (a+1)(b+1)(c+1)=72, (b+1)(c+1)(d+1)=192, (c+1)(d+1)(a+1)=96, (a+1)(b+1)(d+1)=144, Now multiply All the equations and take cube on both sides. Then we get, (a+1)(b+1)(c+1)(d+1)=(72 X 192 X 96 X 144)^(1/3)=576,
Now divide this by each of the earlier equations to get d+1=8, a+1=3, b+1=6, c+1=4,
i.e, a=2 , b=5, c=3, d=7,
So (abcd+a+b+c+d)=227


Nice work.

Niranjan Khanderia - 7 years, 1 month ago

any other way

Gaurav Jain - 6 years, 9 months ago

so great!!

Thư Hồ - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...