Maksimum

Algebra Level 5

x 2 y + y 2 z + z 2 x \large x^2y+y^2z+z^2x

If x , y , z x, y, z are non-negative real numbers such that x + y + z = 9 , x+y+z=9, what is the maximum value of the expression above?

Give your answer to 2 decimal places.


The answer is 108.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Calvin Lin Staff
Mar 8, 2017

This is a pretty famous olympiad inequality problem, so let me present a classical inequality approach. There are actually several ways to tackle this, and this is my favorite (for reasons which you will see).


We will prove something stronger. For non-negative reals, we have
27 ( x 2 y + y 2 z + z 2 x + x y z ) 4 ( x + y + z ) 3 27(x^2y+y^2z+z^2x + xyz) \leq 4 ( x + y + z) ^3

Proof: WLOG, let y y be the middle number. Since ( y x ) ( y z ) 0 (y-x)(y-z) \leq 0 , thus y 2 + x z x y + z y y^2 + xz \leq xy + zy . Then,

27 ( x 2 y + y 2 z + z 2 x + x y z ) = 27 [ x 2 y + x y z + z ( y 2 + z x ) ] 27 ( x 2 y + x y z + x y z + z 2 y ) = 27 y ( x + z ) 2 = 4 × 27 y × x + z 2 × x + z 2 4 × ( y + x + z 2 + x + z 2 ) 3 = 4 ( x + y + z ) 3 \begin{aligned} 27(x^2y+y^2z+z^2x + xyz) & = 27[ x^2y + xyz + z(y^2 + zx) ] \\ & \leq 27 ( x^2y + xyz + xyz + z^2y ) \\ & = 27 y ( x + z) ^ 2 \\ & = 4 \times 27 y \times \frac{x+z}{2} \times \frac{x+z}{2} \\ & \leq 4 \times ( y + \frac{x+z}{2} + \frac{x+z}{2} ) ^ 3 \\ & = 4 ( x + y + z) ^ 3 \\ \end{aligned}

For equality to hold, we need z ( y x ) ( y z ) = 0 z(y-x)(y-z) = 0 and y = x + z 2 = x + z 2 y = \frac{x+z}{2} = \frac{x+z}{2} .
This occurs when x = y = z x = y = z or when z = 0 , x = 2 y z = 0 , x = 2y . _\square


Applying this to the problem,

27 ( x 2 y + y 2 z + z 2 x ) 27 ( x 2 y + y 2 z + z 2 x + x y z ) 4 ( x + y + z ) 3 27(x^2y+y^2z+z^2x) \leq 27(x^2y+y^2z+z^2x + xyz) \leq 4 ( x + y + z) ^3

We have equality when z = 0 , x = 2 y z = 0, x = 2y (and cyclic permutations).

There is a correction in the third line of the proof i.e. 27 ( x 2 y + x y z + x y z + z x ) \leq 27 ( x^2y + xyz + xyz + z^x )

Rishik Jain - 4 years, 3 months ago

Log in to reply

Thanks, fixed.

Calvin Lin Staff - 4 years, 3 months ago

Nice solution.

Sudhamsh Suraj - 4 years, 3 months ago

Wooowwwwww.

I Gede Arya Raditya Parameswara - 4 years, 3 months ago
Mark Hennings
Mar 7, 2017

Write f ( x , y , z ) = x 2 y + y 2 z + z 2 x f(x,y,z) = x^2y + y^2z + z^2x . In what follows, we assume that x , y , z 0 x,y,z \ge 0 and that x + y + z = 9 x+y+z=9 . By symmetry, we can also assume that x y , z x \ge y,z . Then f ( x , y , z ) f ( x , z , y ) = x 2 y + y 2 z + z 2 x x 2 z z 2 y y 2 x = ( y z ) ( x 2 + y z x y x z ) = ( y z ) ( x y ) ( x z ) f(x,y,z) - f(x,z,y) \; = \; x^2y + y^2z + z^2x - x^2z - z^2y - y^2x \; = \; (y-z)(x^2 + yz - xy - xz) \; = \; (y-z)(x-y)(x-z) and so we see that f ( x , y , z ) f ( x , z , y ) f(x,y,z) \ge f(x,z,y) for x y z x \ge y \ge z . Thus we see that f ( x , y , z ) f(x,y,z) will be maximised when x y z 0 x \ge y \ge z \ge 0 . Since f ( x + z , y , 0 ) f ( x , y , z ) = ( x + z ) 2 y x 2 y y 2 z z 2 x = 2 x y z + y z 2 y 2 z z 2 x = y z ( x y ) + x z ( y z ) + y z 2 0 f(x+z,y,0) - f(x,y,z) \; = \; (x+z)^2y - x^2y - y^2z - z^2x \; = \; 2xyz + yz^2 - y^2z - z^2x \; = \; yz(x-y) + xz(y-z) + yz^2 \ge 0 for x y z 0 x \ge y \ge z \ge 0 , we see that f ( x , y , z ) f(x,y,z) will be maximised when x y z = 0 x \ge y \ge z = 0 . Thus we need to maximise f ( x , 9 x , 0 ) = x 2 ( 9 x ) 4.5 x 9 f(x,9-x,0) = x^2(9-x) \hspace{2cm} 4.5 \le x \le 9 and this is maximised when x = 6 x=6 , giving us a maximum value of 108 \boxed{108} .

Very nice, this is not x = y = z x=y=z

I Gede Arya Raditya Parameswara - 4 years, 3 months ago

Inequality Will oqqurs when 6 , 3 , 0 6,3,0

I Gede Arya Raditya Parameswara - 4 years, 3 months ago

Mark, wondering if in the third last line it should be "we see that f ( x , y , 0 ) f(x,y,{\color{#D61F06}0}) will be maximised..."

Chew-Seong Cheong - 4 years, 3 months ago

Log in to reply

No, the whole point of the previous arguments is that f ( x , y , z ) f(x,y,z) will be maximised when x y x \ge y and z = 0 z=0 .

Mark Hennings - 4 years, 3 months ago

Log in to reply

OK. Sorry, I didn't read the x y z = 0 x \ge y \ge z = 0 after that. Thanks a lot.

Chew-Seong Cheong - 4 years, 3 months ago
Poonayu Sharma
Mar 14, 2017

I used Lagrange multipliers for this. This uses partial differentiation

Don't hate me for using calculus to do an algebra problem

I am kind of suspicious of this approach though. Might need some corrections @Calvin Lin @Mark Hennings

This is incomplete.

You have only shown that the critical point occurs at (x,y,z) = (3,6,0) and (0,6,3), but how do you know that this critical point is a maximum point?

Pi Han Goh - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...