Man moving on the disc!

Let a uniform circular disc of mass m and radius R is free to rotate in Horizontal Plane about a Point "O" at the edge ( Hinge at the Point "O" ) . A Man Having Same Mass m is standing at the point "A" which is just opposite diametric end point with respect to point "O" .


Now at time t=0 , man Starts moving with Constant velocity " u r e l { u }_{ rel } " with respect to disc.

Then Find The angular displacement of the disc ( θ d i s c { \theta }_{ disc } ) in the time interval when Man reaches again at point "A" at the disc.

If Your answer is θ d i s c { \theta }_{ disc } and it is expressed as :

θ d i s c = π π × a b \\ { \theta }_{ disc }\quad =\quad \pi \quad -\quad \pi \quad \times \sqrt { \cfrac { a }{ b } } .

Then Compute " a + b " ?


Details

\bullet 'a' and 'b' are co-prime positive integers.

\bullet Man moves on circumference of disc only.


Original
This is part of my set Deepanshu's Mechanics Blasts


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Deepanshu Gupta
Nov 14, 2014

Image Image

Here we can't apply Conservation of linear momentum and energy conservation . Since system is hinge about "O"


So let us Consider "Man + disc" as a system , So Net Angular momentum of the system is conserved about the Hinge Point "O".

L ( i n t i a l ) , o = L ( f i n a l ) , o ( a n t i c l o c k w i s e + v e ) 0 + 0 = L ( d i s c ) , o + L ( m a n ) , o 0 = ( m R 2 2 + m R 2 ) ( ω d ) + m x ( u r e l cos θ r 2 ω d x ) . . . ( 1 ) \sum { { L }_{ (intial),o } } \quad =\quad \sum { { L }_{ (final),o } } \quad \quad (\quad anti\quad clockwise\quad +ve\quad )\\ \\ 0\quad +\quad 0\quad =\quad { L }_{ (disc),o }\quad +\quad { L }_{ (man),o }\\ \\ \quad \quad \quad \quad 0\quad \quad =\quad (\cfrac { m{ R }^{ 2 } }{ 2 } \quad +\quad m{ R }^{ 2 }\quad )(-{ \omega }_{ d })\quad +\quad mx(\quad { u }_{ rel }\cos { \cfrac { { \theta }_{ r } }{ 2 } } \quad -{ \quad \omega }_{ d }x\quad )\quad \quad .\quad .\quad .\quad (1) .


x = 2 R cos θ r 2 . . . . ( 2 ) x\quad =\quad 2R\cos { \cfrac { { \theta }_{ r } }{ 2 } } \quad \quad .\quad .\quad .\quad .\quad (2) .


from 1 and 2 we get :

ω d = 4 u r e l ( cos θ r 2 ) 2 3 R + 8 R ( cos θ r 2 ) 2 . . . . . ( 3 ) { \omega }_{ d }\quad =\quad \frac { 4{ u }_{ rel }{ (\cos { \cfrac { { \theta }_{ r } }{ 2 } } ) }^{ 2 } }{ 3R\quad +\quad 8R{ (\cos { \cfrac { { \theta }_{ r } }{ 2 } } ) }^{ 2 } } \quad \quad \quad .\quad .\quad .\quad .\quad .\quad (3) .

And

ω d = d θ d d t . . . ( 4 ) { \omega }_{ d }\quad =\quad \cfrac { d{ \theta }_{ d } }{ dt } \quad \quad .\quad .\quad .\quad (4) .


Also man moves in circle with centre 'C' with angular velocity ω r e l { \omega }_{ rel } Such that :

u r e l = ω r e l R { u }_{ rel }\quad =\quad { \omega }_{ rel }R\quad .

u r e l R = ω r e l = d θ r d t . . . . ( 5 ) \\ \cfrac { { u }_{ rel } }{ R } \quad =\quad { \omega }_{ rel }\quad =\quad \cfrac { d{ \theta }_{ r } }{ dt } \quad \quad \quad .\quad .\quad .\quad .\quad (5) .


using all equations we get relation :

0 θ d d θ d = θ r = 0 θ r = 2 π 4 ( cos θ r 2 ) 2 3 + 8 ( cos θ r 2 ) 2 d θ r \int _{ 0 }^{ { \theta }_{ d } }{ \quad d{ \theta }_{ d } } \quad =\quad \int _{ { \theta }_{ r }=0 }^{ { \theta }_{ r }=2\pi }{ \quad } \frac { 4{ (\cos { \cfrac { { \theta }_{ r } }{ 2 } } ) }^{ 2 } }{ 3\quad +\quad 8{ (\cos { \cfrac { { \theta }_{ r } }{ 2 } } ) }^{ 2 } } \quad d{ \theta }_{ r } .


Now integrating this simple integral by change limits from 0 to pi/2 and by putting θ r = 2 t { \theta }_{ r }\quad =\quad 2t and then change it into tan(t) and putt again t a n ( t ) = Z tan(t)=Z and using standard result that : d x a 2 + x 2 = 1 a arctan x a \int { \cfrac { dx }{ { a }^{ 2 }+{ x }^{ 2 } } } =\quad \cfrac { 1 }{ a } \arctan { \cfrac { x }{ a } } . we get Final answer :


θ d i s c = π π × 3 11 \boxed { { \theta }_{ disc }\quad =\quad \pi \quad -\quad \pi \quad \times \sqrt { \cfrac { 3 }{ 11 } } } .

Q.E.D

Simple question did it the same way.

Ronak Agarwal - 6 years, 6 months ago

Did it the same way. Simple but creative!

Aniket Sanghi - 4 years, 2 months ago

Just to make it more clear it must be mentioned constant speed not velocity.But often go differently.

Spandan Senapati - 4 years ago

Well I am a bit dumb...the qs was tough by my standards but ur solution was simply mindblowing sir...hats off...upvoted u sir for such a nice solution and presentation!!!!

rajdeep brahma - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...