Mangoldt

1 γ n = 1 Λ ( n ) 1 n = ? \large \dfrac 1{\gamma} \sum\limits_{n=1}^{\infty} \frac{\Lambda(n)-1}{n}= \, ?

Notations :

  • γ \gamma denotes the Euler–Mascheroni constant, γ = lim n ( ln ( n ) + k = 1 n 1 k ) 0.5772 \displaystyle\gamma = \lim_{n\to\infty} \left( - \ln(n) + \sum_{k=1}^n \dfrac1k \right) \approx 0.5772 .

  • Λ \Lambda denotes the Von Mangoldt function .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 15, 2016

We have the following Laurent expansions about s = 1 s=1 : ζ ( s ) ζ ( s ) = n = 1 Λ ( n ) n s = ( s 1 ) 1 γ + ( γ 2 + 2 γ 1 ) ( s 1 ) + O ( ( s 1 ) 2 ) ζ ( s ) = n = 1 1 n s = ( s 1 ) 1 + γ γ 1 ( s 1 ) + O ( ( s 1 ) 2 ) \begin{array}{rcl} -\frac{\zeta'(s)}{\zeta(s)} \; = \; \displaystyle\sum_{n=1}^\infty \frac{\Lambda(n)}{n^s} & = & (s-1)^{-1} - \gamma + (\gamma^2 + 2\gamma_1)(s-1) + O\big((s-1)^2\big) \\ \zeta(s) \; = \; \displaystyle \sum_{n=1}^\infty \frac{1}{n^s} & = & (s-1)^{-1} + \gamma - \gamma_1(s-1) + O\big((s-1)^2\big) \end{array} where γ 1 \gamma_1 is the first Stieltjes constant, and hence n = 1 Λ ( n ) 1 n s = ζ ( s ) ζ ( s ) ζ ( s ) = 2 γ + ( γ 2 + 3 γ 1 ) ( s 1 ) + O ( ( s 1 ) 2 ) \sum_{n=1}^\infty \frac{\Lambda(n)-1}{n^s} \; = \; -\frac{\zeta'(s)}{\zeta(s)} - \zeta(s) \; = \; -2\gamma + (\gamma^2 + 3\gamma_1)(s-1) + O\big((s-1)^2\big) Thus we have a removable singularity at s = 1 s=1 for this combined function, and hence n = 1 Λ ( n ) 1 n = lim s 1 [ ζ ( s ) ζ ( s ) ζ ( s ) ] = 2 γ \sum_{n=1}^\infty \frac{\Lambda(n)-1}{n} \; = \; \lim_{s\to1}\left[ -\frac{\zeta'(s)}{\zeta(s)} - \zeta(s)\right] \; = \; -2\gamma making the desired answer equal to 2 \boxed{-2} .

Amazing! The solution I had in mind and pristinely presented. (+1)

Isaac Buckley - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...