Manipulate the 2

Algebra Level 2

x + 1 x = 2 x 0 x 2 n + 1 x 2 n = ? n Z \begin{aligned} x + \frac{1}{x} &= 2 & x \ne 0 \\ \\ x^{2n} + \frac{1}{x^{2n}} &= ? & n \in \Z \end{aligned}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mahdi Raza
Apr 7, 2020

Solution 1: Finding Value for x x

x + 1 x = 2 Given x 2 + 1 x = 2 Square the expression x 2 + 1 = 2 x Cross multiply x 2 2 x + 1 = 0 Bring 2x to LHS ( x 1 ) 2 = 0 Factorise x = 1 Solve for x ( 1 ) 2 n + 1 ( 1 ) 2 n Substitute back into the equation = 2 [ ( 1 ) 2 n = 1 ] \begin{aligned} x + \frac{1}{x} &= 2 \quad \color{#3D99F6}{\text{Given}} \\ \\ \frac{x^2 + 1}{x} &= 2 \quad \color{#3D99F6}{\text{Square the expression}} \\ \\ x^2 + 1 &= 2x \quad \color{#3D99F6}{\text{Cross multiply}} \\ \\ x^2 - 2x + 1 &= 0 \quad \color{#3D99F6}{\text{Bring 2x to LHS}} \\ \\ (x-1)^2 &= 0 \quad \color{#3D99F6}{\text{Factorise}} \\ \\ x &= 1 \quad \color{#3D99F6}{\text{Solve for x}} \\ \\ \\ (1)^{2n} + \frac{1}{(1)^{2n}} &\quad \color{#3D99F6}{\text{Substitute back into the equation}} \\ \\ = \boxed{2} &\quad \color{#3D99F6}{[\because(1)^{2n} = 1 ]} \end{aligned}

Solution 2: Manipulation

x + 1 x = 2 Given ( x + 1 x ) 2 = ( 2 ) 2 Square the expression x 2 + 1 x 2 + ( 2 x 1 x ) = 4 Expand and Simplify x 2 + 1 x 2 = 2 For n = 1 . . . . Repeat for n times Regardless of n , answer is always 2 \begin{aligned} x + \frac{1}{x} &= 2 \quad \color{#D61F06}{\text{Given}} \\ \\ \bigg(x + \frac{1}{x} \bigg)^{2} &= (2)^{2} \quad \color{#D61F06}{\text{Square the expression}} \\ \\ x^2 + \frac{1}{x^2} + \bigg(2 \cdot x \cdot \frac{1}{x}\bigg) &= 4 \quad \color{#D61F06}{\text{Expand and Simplify}} \\ \\ x^2 + \frac{1}{x^2} &= 2 \quad \color{#D61F06}{\text{For } n=1} \\ &. \\ &. \\ &. \\ &. \\ &\color{#D61F06}{\text{Repeat for } n \text{ times}} \\ &\color{#D61F06}{\text{Regardless of }n, \text{ answer is always 2}}\end{aligned}

x + 1 x = 2 x 2 2 x + 1 = 0 ( x 1 ) 2 = 0 x = 1 x n + 1 x n = 2 x + \dfrac 1x = 2 \implies x^2 -2x + 1 = 0 \implies (x-1)^2 = 0 \implies x = 1\implies x^n + \dfrac 1{x^n} = \boxed 2 for any n Z n \in \mathbb Z .

We know that x + 1 x 2 x × 1 x = 2 x+\dfrac{1}{x}\geq 2\sqrt {x\times \dfrac{1}{x}}=2 . The minimum is attained for x = 1 x=1 . So, for any natural number p , x p + 1 x p = 1 + 1 = 2 p, x^p+\dfrac{1}{x^p}=1+1=2 . Hence, for p = 2 n , x 2 n + 1 x 2 n = 2 p=2n, x^{2n}+\dfrac{1}{x^{2n}}=\boxed 2 .

I didn't quite fully understand how you got the value of x x from the minimum...

Mahdi Raza - 1 year, 2 months ago

Log in to reply

A. M. of two numbers equals their G. M. when the numbers are equal. In this case, when x = 1 x x = 1 x=\dfrac{1}{x}\implies x=1 .

A Former Brilliant Member - 1 year, 2 months ago

Log in to reply

Ohh clever deduction. Great solution!! Maybe you can explain the same in your explanation

Mahdi Raza - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...