Manipulated Taylor Series

Calculus Level 1

Determine the Taylor series centered about x = 0 x = 0 for the function

f ( x ) = 2 x 3 sin 4 x 5 . f(x) = 2x^3\sin 4x^5.

n = 0 ( 1 ) n 2 4 n + 3 x 10 n + 5 ( 2 n + 1 ) ! \sum_{n = 0}^{\infty}(-1)^n \frac{2^{4n + 3} x^{10n + 5}}{(2n + 1)!} n = 0 ( 1 ) n 4 2 n + 2 x 10 n + 5 ( 2 n + 1 ) ! \sum_{n = 0}^{\infty}(-1)^n \frac{4^{2n + 2} x^{10n + 5}}{(2n + 1)!} n = 0 ( 1 ) n 2 4 n + 3 x 10 n + 8 ( 2 n + 1 ) ! \sum_{n = 0}^{\infty}(-1)^n \frac{2^{4n + 3} x^{10n + 8}}{(2n + 1)!} n = 0 ( 1 ) n 4 2 n + 2 x 10 n + 8 ( 2 n + 1 ) ! \sum_{n = 0}^{\infty}(-1)^n \frac{4^{2n + 2} x^{10n + 8}}{(2n + 1)!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( x ) = 2 x 3 sin 4 x 5 By Maclaurin series or Taylor series centered at x = 0 = 2 x 3 n = 0 ( 1 ) n ( 4 x 5 ) 2 n + 1 ( 2 n + 1 ) ! = n = 0 ( 1 ) n 2 ( 2 2 ) 2 n + 1 x 3 ( x 5 ) 2 n + 1 ( 2 n + 1 ) ! = n = 0 ( 1 ) n 2 4 n + 2 + 1 x 10 n + 5 + 3 ( 2 n + 1 ) ! f ( x ) = n = 0 ( 1 ) n 2 4 n + 3 x 10 n + 8 ( 2 n + 1 ) ! \begin{aligned} f(x) & = 2x^3 \color{#3D99F6}{\sin 4x^5} & \small \color{#3D99F6}{\text{By Maclaurin series or Taylor series centered at }x=0} \\ & = 2x^3 \color{#3D99F6}{\sum_{n=0}^\infty (-1)^n \frac {(4x^5)^{2n+1}}{(2n+1)!}} \\ & = \sum_{n=0}^\infty (-1)^n \frac {2(2^2)^{2n+1}\cdot x^3(x^5)^{2n+1}}{(2n+1)!} \\ & = \sum_{n=0}^\infty (-1)^n \frac {2^{4n+2+1}\cdot x^{10n+5+3}}{(2n+1)!} \\ \implies f(x) & = \boxed{\displaystyle \sum_{n=0}^\infty (-1)^n \frac {2^{4n+3}x^{10n+8}}{(2n+1)!}} \end{aligned}

why 2^(4n+3) ?

Wolfgang Allendorf - 2 years, 4 months ago

Log in to reply

2 × 4 2 n + 1 = 2 × 2 4 n + 2 = 2 4 n + 3 2\times {\color{#3D99F6} 4^{2n+1}} = 2\times {\color{#3D99F6} 2^{4n+2}} = \boxed{2^{4n+3}} .

Chew-Seong Cheong - 2 years, 4 months ago

Nice question. Thanks Brilliant.org

Nandha Kumar - 1 year, 9 months ago

why x^(10n+8) and not x^(10n+4) ?

Eiko Yamada - 1 year, 3 months ago

Log in to reply

I have added two extra steps to explained.

Chew-Seong Cheong - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...