Manipulating Reciprocals

Algebra Level 4

p p , q q , and r r are all positive numbers, and they all satisfy the following equations: p 1 q = 3 p - \frac1q = 3 , q 1 r = 4 q - \frac1r = 4 , r 1 p = 5 r - \frac1p = 5 . Compute the value of p q r 1 p q r pqr - \frac1{pqr} .


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ben Habeahan
Aug 19, 2015

p 1 q = 3 ( 1 ) q 1 r = 4 ( 2 ) r 1 p = 5 ( 3 ) p- \frac{ 1}{ q}=3 \dots (1) \\ q- \frac{ 1}{ r}=4 \dots (2) \\r- \frac{ 1}{ p}=5 \dots (3) \\ from ( 1 ) × ( 2 ) × ( 3 ) (1) \times (2) \times (3) we have, ( p 1 q ) ( q 1 r ) ( r 1 p ) = 3.4.5 ( p q r 1 p q r ) ( p 1 q ) ( q 1 r ) ( r 1 p ) = 60 ( 4 ) (p- \frac{ 1}{ q}) (q- \frac{ 1}{ r}) (r- \frac{ 1}{ p}) = 3.4.5 \\ (pqr- \frac{ 1}{ pqr})-(p- \frac{ 1}{ q}) -(q- \frac{ 1}{ r})-(r- \frac{ 1}{ p}) =60 \dots(4) \\ substitution ( 1 ) , ( 2 ) a n d ( 3 ) t o ( 4 ) (1), (2) and (3) to (4) \\ p q r 1 p q r 3 4 5 = 60 p q r 1 p q r = 72 pqr- \frac{ 1}{ pqr} -3-4-5=60 \\ pqr- \frac{ 1}{ pqr} = \boxed{72}

1
2
3
4
5
6
7
add all 3:
p + q + r - 1/p - 1/q - 1/r = 12

multiply all 3:
pqr - 1/pqr - (12) = 60

Answer: 60+12 = 72

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...