Manipulating The Integral

Calculus Level 5

When 0 π x sin x 1 + cos 2 x d x is written in the form a π b c \text{When} \int _{ 0 }^{ \pi }{ \frac { x\sin { x } }{ 1+\cos ^{ 2 }{ x } } } dx \text{ is written in the form} \frac { a\pi^b }{ c } Where a, b, and c are positive integers such that a and c are prime, \text{Where a, b, and c are positive integers such that a and c are prime,} What is the value of a + b + c ? \text{What is the value of } a+b+c?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Make the substitution u = π x d u d x = 1 d x = d u u = π 0 = π u = π π = 0 u=\pi-x \\\frac { du }{ dx } =-1\\dx=-du\\\\u=\pi-0=\pi\\u=\pi-\pi=0 I = π 0 ( π u ) sin ( π u ) 1 + cos 2 ( π u ) d u = 0 π ( π u ) sin ( π u ) 1 + cos 2 ( π u ) d u I=-\int _{ \pi }^{ 0 }{ \frac { (\pi-u)\sin(\pi-u) }{ 1+\cos^2(\pi-u) } du } =\int _{ 0 }^{ \pi }{ \frac { (\pi-u)\sin(\pi-u) }{ 1+\cos^2(\pi-u) } du } sin ( π u ) = sin u \sin(\pi-u)=\sin u c o s 2 ( π u ) = cos 2 u cos^2(\pi-u)=\cos^2u 0 π ( π u ) sin ( u ) 1 + cos 2 ( u ) d u = 0 π ( π ) sin ( u ) 1 + cos 2 ( u ) d u 0 π ( u ) sin ( u ) 1 + cos 2 ( u ) d u \int _{ 0 }^{ \pi }{ \frac { (\pi -u)\sin (u) }{ 1+\cos ^{ 2 } (u) } du } =\int _{ 0 }^{ \pi }{ \frac { (\pi )\sin (u) }{ 1+\cos ^{ 2 } (u) } du } -\int _{ 0 }^{ \pi }{ \frac { (u)\sin (u) }{ 1+\cos ^{ 2 } (u) } du } t = cos u d t d u = sin u d u = d t sin u t = cos 0 = 1 t = cos π = 1 t=-\cos u \\\frac {dt} {du} = \sin u\\du = \frac {dt} {\sin u} \\t=-\cos 0=-1\\t=-\cos \pi=1 Therefore: 1 1 π 1 + t 2 d t = π ( arctan ( 1 ) arctan ( 1 ) ) = π 2 2 \int _{ -1 }^{ 1 }{ \frac { \pi }{ 1+t^2 } dt} =\pi(\arctan(1) - \arctan(-1))=\frac {\pi^2} {2} And the second integral is equivalent to: I I Therefore: I = π 2 2 I I = π 2 4 I=\frac {\pi^2} {2} - I\\I=\frac {\pi^2} {4} . a + b + c = 1 + 2 + 4 = 7 a + b + c = 1+2+4 = \boxed{7} .

Damn!! I solved it correctly and put the answer as '6' dis regarding the '1'!!!

Kunal Gupta - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...