Manipulation of Logarithms

Level pending

{ log ( A B ) = X log ( A ) log ( B ) = Y log A ( B ) log B ( A ) = Z \begin{cases} \log(AB) = X \\ \log(A)\log(B) = Y \\ \log_{A}(B) - \log_{B}(A) = Z\end{cases}

Given the above, find the value of: log ( B ) log ( A ) \log(B) - \log(A) in terms of X X and Y Y and Z Z .

X Y Z \frac{XY}{Z} X Z Y \frac{XZ}{Y} X Y Z \frac{X}{YZ} Z Y X \frac{ZY}{X}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kevin Lee
Jul 24, 2016

Given: l o g A ( B ) l o g B ( A ) = Z log_{A}(B) - log_{B}(A) = Z ... this can be manipulated into:

  • l o g ( B ) l o g ( A ) l o g ( A ) l o g ( B ) \frac{log(B)}{log(A)} - \frac{log(A)}{log(B)} ... get a common denominator ...

  • ( l o g ( B ) ) 2 l o g ( A ) l o g ( B ) ( l o g ( A ) ) 2 l o g ( B ) l o g ( A ) \frac{(log(B))^2}{log(A)log(B)} - \frac{(log(A))^2}{log(B)log(A)} ...

  • Let x = l o g ( B ) x = log(B) and let y = l o g ( A ) y = log(A) and substitute:

  • x 2 y 2 x y \frac{x^2-y^2}{xy} ... factor:

  • ( x + y ) ( x y ) ( x y ) \frac{(x+y)(x-y)}{(xy)} ... replace known values:

  • X ( x y ) Y = Z \frac{X(x-y)}{Y} = Z ... solve for ( x y ) (x-y) ... (keep in mind: l o g ( A B ) = l o g ( A ) + l o g ( B ) = X log(AB) = log(A) + log(B) = X )

  • ( x y ) = Y Z X (x-y) = \frac{YZ}{X}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...