Many many tuples

Find the last three digits of the number of 599-tuples ( x 1 , x 2 , , x 599 ) (x_1,x_2, \ldots, x_{599}) of integers where 0 x i 598 0\leq x_i \leq 598 , for i = 1 i=1 to 599, such that x 1 2 x 2 2 + x 3 2 x 4 2 + x 598 2 + x 599 2 1 ( m o d 599 ) . x_1^2-x_2^2+x_3^2-x_4^2+\cdots-x_{598}^2+x_{599}^2 \equiv 1 \pmod{599}.


The answer is 600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Calvin Lin Staff
May 13, 2014

First note that 599 is prime.

For a odd number n n let N n N_n be the number of solutions of x 1 2 x 2 2 + x 3 2 x 4 2 + + x n 2 1 ( m o d 599 ) x_1^2-x_2^2+x_3^2-x_4^2+\cdots+x_{n}^2 \equiv 1 \pmod{599} , where 0 x i 598 0\leq x_i \leq 598 , for i = 1 i=1 to n n . We need to know the last three digits of N 599 N_{599} .

Consider now the odd number n 3 n\geq 3 .

Let t x 1 x 2 ( m o d 599 ) t\equiv x_1-x_2 \pmod{599} , i.e. x 1 x 2 + t ( m o d 599 ) x_1 \equiv x_2+t \pmod{599} . Replacing in the principal equation we get: t 2 + 2 x 2 t + x 3 2 x 4 2 + + x n 2 1 ( m o d 599 ) . t^2+2x_2t+x_3^2-x_4^2+\cdots+x_{n}^2 \equiv 1 \pmod{599}.

  1. If t = 0 t=0 we get N n 2 N_{n-2} solutions for the ( n 2 ) (n-2) -tuple ( x 3 , , x n ) (x_3, \ldots, x_n) , thus we get 599 N n 2 599N_{n-2} solutions of the form ( m , m , x 3 , , x n ) (m,m,x_3, \ldots, x_n) , where m m can take any value between 0 and 598.

  2. If t 0 t\neq0 we get exactly one possible value of x 2 x_2 given the values x 3 , , x n x_3, \ldots, x_n (here we use the fact that 599 is a prime number). Thus, if we select the values of x 3 , , x n x_3, \ldots, x_n then the value of x 2 x_2 is determined and then the value of x 1 x_1 is also determined, since x 1 x 2 + t ( m o d 599 ) x_1 \equiv x_2+t \pmod{599} . Therefore, in this case we have 59 9 n 2 599^{n-2} solutions for each value of t t and the total number of solutions is 598 59 9 n 2 598\cdot 599^{n-2} since t t can take 598 values.

Hence we conclude that N n = 599 N n 2 + 598 59 9 n 2 N_n=599N_{n-2}+598\cdot 599^{n-2} , for any odd number n 3 n\geq3 .

In the other hand, we know that N 1 = 2 N_1=2 , then N 3 = 599 × 2 + 598 × 599 = 59 9 2 + 599 , N_3=599\times2+598\times599=599^2+599, and N 5 = 599 × N 3 + 598 × 59 9 3 = 599 ( 59 9 2 + 599 ) + ( 599 1 ) × 59 9 3 = 59 9 4 + 59 9 2 , N_5=599\times N_3+598\times599^3=599(599^2+599)+(599-1)\times 599^3=599^4+599^2, and by an induction we can conclude that N n = 59 9 n 1 + 59 9 n 1 2 , N_n=599^{n-1}+599^{\frac{n-1}{2}}, for each odd n n .

Therefore, we have N 599 = 59 9 598 + 59 9 299 N_{599}=599^{598}+599^{299} .

By the Binomial Theorem: 59 9 299 = ( 600 1 ) 299 ( 299 1 ) 60 0 1 ( 1 ) 298 + ( 299 0 ) ( 1 ) 299 ( m o d 1000 ) , 599^{299}=(600-1)^{299}\equiv {299 \choose 1}600^1(-1)^{298}+{299 \choose 0}(-1)^{299} \pmod{1000}, then 59 9 299 600 × 299 1 399 ( m o d 100 ) . 599^{299} \equiv 600\times299-1 \equiv 399 \pmod{100}. Squaring we get 59 9 598 201 ( m o d 1000 ) 599^{598} \equiv 201 \pmod{1000} , therefore N 599 201 + 399 600 ( m o d 1000 ) . N_{599}\equiv 201+399 \equiv 600 \pmod{1000}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...