Many roots

Algebra Level 3

What is the value of

25 + 10 6 + 25 10 6 ? \sqrt{ 25 + 10 \sqrt{6} } + \sqrt{ 25 - 10 \sqrt{6} } ?

2 15 2 \sqrt{15} 2 10 2 \sqrt{10} 10 10 5 3 5 \sqrt{3} 3 10 3 \sqrt{10} 15 3 5 3 \sqrt{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Square the expression to get

( 25 + 10 6 ) + ( 25 10 6 ) + 2 ( 25 + 10 6 ) ( 25 10 6 ) = (25 + 10\sqrt{6}) + (25 - 10\sqrt{6}) + 2\sqrt{(25 + 10\sqrt{6})(25 - 10\sqrt{6})} =

50 + 2 625 600 = 60 50 + 2\sqrt{625 - 600} = 60 .

So the given expression has a value of 60 = 2 15 . \sqrt{60} = \boxed{2\sqrt{15}}.

Oh, I like what you did. Your way is much easier to use.

I did it by showing that 25 ± 10 6 = 15 ± 10 \sqrt{ 25 \pm 10 \sqrt{6} } = \sqrt{15} \pm \sqrt{10} .

Chung Kevin - 6 years, 4 months ago

Log in to reply

Thanks. I like your approach too; I guess everyone has their preferred method. :)

Brian Charlesworth - 6 years, 4 months ago

wait,where did the 600 come from?

Frankie Fook - 6 years, 4 months ago

can we use a^2-b^2 identity

shweta dalal - 6 years, 4 months ago
Adrian Delgado
Feb 5, 2015

Let a = 25 + 10 6 , b = 25 10 6 a=\sqrt{25+10\sqrt{6} } , b= \sqrt{25-10 \sqrt{6}}

a 2 + b 2 = ( 25 + 10 6 ) + ( 25 10 6 ) = 50 a^2 + b^2 = (25 + 10\sqrt6) + (25 -10\sqrt 6) = 50 and a b = ( 25 + 10 6 ) ( 25 10 6 ) = 2 5 2 ( 10 6 ) 2 = = 625 600 = 25 = 5 ab = \sqrt{(25+10\sqrt 6)(25- 10\sqrt 6)}=\sqrt {25^2 - (10\sqrt 6)^2}=\\ =\sqrt{625-600}=\sqrt{25}=5

( a + b ) 2 = a 2 + b 2 + 2 a b = 50 + 2 5 \ = 60 a + b = 60 = 2 15 (a+b)^2 = a^2 + b^2 + 2ab\\ =50+2\cdot 5\ =60\\ a+b=\sqrt{60}=2\sqrt{15}

Nicely written!

Chung Kevin - 6 years, 4 months ago

Nice solution!

Mục Xiên - 6 years, 4 months ago
Mj Santos
Jan 31, 2015

Let a = 25 , b = 10 a=25, b=10 6 \sqrt6 , x x be the answer,

Hence,

a + b + a b = x \sqrt{a+b}+\sqrt{a-b}=x

Square both sides

a + b + a b + 2 a 2 b 2 = x 2 a+b+a-b+2\sqrt{a^2-b^2}=x^2

2 ( a + a 2 b 2 = x 2 2(a+\sqrt{a^2-b^2}=x^2

Substitute the values of a and b to get

2 ( 25 + ( 25 ) 2 ( 10 6 ) 2 2(25+\sqrt{(25)^2-(10\sqrt6)^2} = x 2 x^2

x 2 = 60 x^{2}=60

x = 60 x=\sqrt{60}

Therefore,

25 + 10 6 \sqrt{25+10\sqrt6} + 25 10 6 \sqrt{25-10\sqrt6} = 6 0 \sqrt60 = 2 15 \sqrt{15}

Nice :) I like this way.

Chung Kevin - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...