Many Variables

Algebra Level 5

x + y + z = 1 , x a 2 + y b 2 + z c 2 = w 2 , x a 3 + y b 3 + z c 3 = w 3 , x a 4 + y b 4 + z c 4 = w 4 \begin{aligned} x + y + z &= 1, \\ xa^2 + yb^2 + zc^2 &= w^2, \\ xa^3 + yb^3 + zc^3 &= w^3, \\ xa^4 + yb^4 + zc^4 &= w^4 \end{aligned}

The real numbers w w , a a , b b , c c are distinct, such that there exist real numbers x x , y y , and z z satisfying the system of equations above.

If ( a , b , c ) = ( 13 , 17 , 19 ) (a,b,c) = (13, 17, 19) , there is a unique value of w |w| such that it is less than 6. Find the value to the nearest tenth.


The answer is 5.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 11, 2015

It is given that:

{ x + y + z = 1 . . . ( 1 ) 1 3 2 x + 1 7 2 y + 1 9 2 z = 169 x + 289 y + 361 z = w 2 . . . ( 2 ) 1 3 3 x + 1 7 3 y + 1 9 3 z = 2197 x + 4913 y + 6859 z = w 3 . . . ( 3 ) 1 3 4 x + 1 7 4 y + 1 9 4 z = 28561 x + 83521 y + 130321 z = w 4 . . . ( 4 ) \begin{cases} x + y + z = 1 &...(1) \\ 13^2 x + 17^2 y + 19^2 z = 169x + 289y + 361z = w^2 &...(2) \\ 13^3 x + 17^3 y + 19^3 z = 2197x + 4913y + 6859z = w^3 &...(3) \\ 13^4 x + 17^4 y + 19^4 z = 28561x + 83521y + 130321z = w^4 &...(4) \end{cases}

In matrix, (2), (3) and (4) is as follows:

( 169 289 361 2197 4913 6859 28561 83521 130321 ) ( x y z ) = ( w 2 w 3 w 4 ) \begin{aligned} \begin{pmatrix} 169 & 289 & 361 \\ 2197 & 4913 & 6859 \\ 28561 & 83521 & 130321 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} & = \begin{pmatrix} w^2 \\ w^3 \\ w^4 \end{pmatrix} \end{aligned}

( x y z ) = ( 169 289 361 2197 4913 6859 28561 83521 130321 ) 1 ( w 2 w 3 w 4 ) = 1 423158424 ( 33698267 3755844 104329 45207669 5856864 183027 21587722 2930460 97682 ) ( w 2 w 3 w 4 ) x + y + z = 10078320 w 2 829440 w 3 + 18984 w 4 423158424 1 = 419930 w 2 34560 w 3 + 791 w 4 17631601 \begin{aligned} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} & = \begin{pmatrix} 169 & 289 & 361 \\ 2197 & 4913 & 6859 \\ 28561 & 83521 & 130321 \end{pmatrix}^{-1} \begin{pmatrix} w^2 \\ w^3 \\ w^4 \end{pmatrix} \\ & = \frac{1}{423158424} \begin{pmatrix} 33698267 & -3755844 & 104329 \\ -45207669 & 5856864 & -183027 \\ 21587722 & -2930460 & 97682 \end{pmatrix} \begin{pmatrix} w^2 \\ w^3 \\ w^4 \end{pmatrix} \\ \Rightarrow x + y + z & = \frac{10078320w^2 -829440w^3 +18984w^4}{423158424} \\ 1 & = \frac{419930w^2-34560w^3+791w^4}{17631601} \end{aligned}

791 w 4 34560 w 3 + 419930 w 2 17631601 = 0 ( w + 4199 791 ) ( w 13 ) ( w 17 ) ( w 19 ) = 0 \begin{aligned} \Rightarrow 791w^4-34560w^3 + 419930w^2 -17631601 & = 0 \\ \left(w+\frac{4199}{791} \right)(w-13)(w-17)(w-19) & = 0 \end{aligned}

We note that w = 4199 791 5.308470291 w = - \frac{4199}{791} \approx -5.308470291 and w 5.3 < 6 |w| \approx \boxed{5.3} < 6 .

edited edited

Alan Yan - 5 years, 8 months ago
Alan Yan
Oct 4, 2015

Define s n = x a n + y b n + z c n s_n = xa^n+yb^n+zc^n

The characteristic equation of this recursion has roots a , b , c a,b,c . Therefore the recursion follows s n p s n 1 + q s n 2 r s n 3 = 0 s_n -ps_{n-1} + qs_{n-2} - rs_{n-3}= 0 where ( s a ) ( s b ) ( s c ) = s 3 p s 2 + q s r (s-a)(s-b)(s-c) = s^3 - ps^2 + qs - r .

We know that s 0 = 1 , s 2 = w 2 , s 3 = w 3 , s 4 = w 4 s_0 = 1 , s_2 = w^2 , s_3 = w^3 , s_4 = w^4 s 4 p s 3 + q s 2 r s 1 = 0 s_4 - ps_3 + qs_2 - rs_1 = 0 s 3 p s 2 + q s 1 r s 0 = 0 s_3 - ps_2 + qs_1 - rs_0 = 0

Plugging in the values and equating the two equalities for s 1 s_1 , we get that w 4 p w 3 + q w 2 r = w 3 + p w 2 + r q , \frac{w^4 - pw^3 + qw^2}{r} = \frac{-w^3 + pw^2 + r}{q}, q w 4 ( p q r ) w 3 + ( q 2 p r ) w 2 r 2 = 0. qw^4 - (pq - r)w^3 + (q^2 - pr)w^2 - r^2 = 0. q w ( w 3 p w 2 + q w r ) + r ( w 3 p w 2 + q w r ) = 0 qw(w^3 - pw^2 + qw - r) + r(w^3 - pw^2 +qw - r) = 0 ( q w + r ) ( w a ) ( w b ) ( w c ) = 0 (qw+r)(w - a ) (w - b)( w-c) = 0 Since w , a , b , c w,a,b,c are distinct, you know that w = r q w = a b c a b + b c + c a w = \frac{-r}{q} \implies |w| = \frac{abc}{ab+bc+ca} Plugging in the values for a , b , c a,b,c , you get that w 5.3 |w| \approx \boxed{5.3}

wait this is a WOOT poly B problem :P

Edgar Wang - 5 years, 8 months ago

Log in to reply

Yep it is :) But I don't think it originated from WOOT.

Alan Yan - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...