x + y + z x a 2 + y b 2 + z c 2 x a 3 + y b 3 + z c 3 x a 4 + y b 4 + z c 4 = 1 , = w 2 , = w 3 , = w 4
The real numbers w , a , b , c are distinct, such that there exist real numbers x , y , and z satisfying the system of equations above.
If ( a , b , c ) = ( 1 3 , 1 7 , 1 9 ) , there is a unique value of ∣ w ∣ such that it is less than 6. Find the value to the nearest tenth.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
edited edited
Define s n = x a n + y b n + z c n
The characteristic equation of this recursion has roots a , b , c . Therefore the recursion follows s n − p s n − 1 + q s n − 2 − r s n − 3 = 0 where ( s − a ) ( s − b ) ( s − c ) = s 3 − p s 2 + q s − r .
We know that s 0 = 1 , s 2 = w 2 , s 3 = w 3 , s 4 = w 4 s 4 − p s 3 + q s 2 − r s 1 = 0 s 3 − p s 2 + q s 1 − r s 0 = 0
Plugging in the values and equating the two equalities for s 1 , we get that r w 4 − p w 3 + q w 2 = q − w 3 + p w 2 + r , q w 4 − ( p q − r ) w 3 + ( q 2 − p r ) w 2 − r 2 = 0 . q w ( w 3 − p w 2 + q w − r ) + r ( w 3 − p w 2 + q w − r ) = 0 ( q w + r ) ( w − a ) ( w − b ) ( w − c ) = 0 Since w , a , b , c are distinct, you know that w = q − r ⟹ ∣ w ∣ = a b + b c + c a a b c Plugging in the values for a , b , c , you get that ∣ w ∣ ≈ 5 . 3
wait this is a WOOT poly B problem :P
Log in to reply
Yep it is :) But I don't think it originated from WOOT.
Problem Loading...
Note Loading...
Set Loading...
It is given that:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ x + y + z = 1 1 3 2 x + 1 7 2 y + 1 9 2 z = 1 6 9 x + 2 8 9 y + 3 6 1 z = w 2 1 3 3 x + 1 7 3 y + 1 9 3 z = 2 1 9 7 x + 4 9 1 3 y + 6 8 5 9 z = w 3 1 3 4 x + 1 7 4 y + 1 9 4 z = 2 8 5 6 1 x + 8 3 5 2 1 y + 1 3 0 3 2 1 z = w 4 . . . ( 1 ) . . . ( 2 ) . . . ( 3 ) . . . ( 4 )
In matrix, (2), (3) and (4) is as follows:
⎝ ⎛ 1 6 9 2 1 9 7 2 8 5 6 1 2 8 9 4 9 1 3 8 3 5 2 1 3 6 1 6 8 5 9 1 3 0 3 2 1 ⎠ ⎞ ⎝ ⎛ x y z ⎠ ⎞ = ⎝ ⎛ w 2 w 3 w 4 ⎠ ⎞
⇒ ⎝ ⎛ x y z ⎠ ⎞ ⇒ x + y + z 1 = ⎝ ⎛ 1 6 9 2 1 9 7 2 8 5 6 1 2 8 9 4 9 1 3 8 3 5 2 1 3 6 1 6 8 5 9 1 3 0 3 2 1 ⎠ ⎞ − 1 ⎝ ⎛ w 2 w 3 w 4 ⎠ ⎞ = 4 2 3 1 5 8 4 2 4 1 ⎝ ⎛ 3 3 6 9 8 2 6 7 − 4 5 2 0 7 6 6 9 2 1 5 8 7 7 2 2 − 3 7 5 5 8 4 4 5 8 5 6 8 6 4 − 2 9 3 0 4 6 0 1 0 4 3 2 9 − 1 8 3 0 2 7 9 7 6 8 2 ⎠ ⎞ ⎝ ⎛ w 2 w 3 w 4 ⎠ ⎞ = 4 2 3 1 5 8 4 2 4 1 0 0 7 8 3 2 0 w 2 − 8 2 9 4 4 0 w 3 + 1 8 9 8 4 w 4 = 1 7 6 3 1 6 0 1 4 1 9 9 3 0 w 2 − 3 4 5 6 0 w 3 + 7 9 1 w 4
⇒ 7 9 1 w 4 − 3 4 5 6 0 w 3 + 4 1 9 9 3 0 w 2 − 1 7 6 3 1 6 0 1 ( w + 7 9 1 4 1 9 9 ) ( w − 1 3 ) ( w − 1 7 ) ( w − 1 9 ) = 0 = 0
We note that w = − 7 9 1 4 1 9 9 ≈ − 5 . 3 0 8 4 7 0 2 9 1 and ∣ w ∣ ≈ 5 . 3 < 6 .