Master limit 2

Calculus Level 4

lim n k = 1 n ( n + k 2 ) n 2 = ? \displaystyle\lim \limits_{n\to \infty }\displaystyle\sum \limits^{n}_{k=1}\frac{\sqrt{\dbinom{n + k}{ 2} } }{n^{2}} = \ ?

3 2 4 \frac {3\sqrt {2}}{4} 0 1 2 \frac {1}{2} 2 4 \frac {\sqrt {2}}{4} 1 \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenny Lau
Oct 12, 2015

This contains one fallacious step... yet...

lim n k = 1 n ( n + k 2 ) n 2 \displaystyle\quad\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{\binom{n+k}{2}}}{n^2}

= lim n k = 1 n ( n + k ) ( n + k 1 ) 2 n 2 =\displaystyle\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{\frac{(n+k)(n+k-1)}{2}}}{n^2}

= lim n k = 1 n 1 n ( 1 + k n ) ( 1 + k n 1 n ) 2 =\displaystyle\lim_{n\to\infty}\sum_{k=1}^n\frac1n\sqrt{\frac{(1+\frac kn)(1+\frac kn-\frac1n)}{2}}

= lim n k = 1 n 1 n ( 1 + k n ) ( 1 + k n ) 2 =\displaystyle\lim_{n\to\infty}\sum_{k=1}^n\frac1n\sqrt{\frac{(1+\frac kn)(1+\frac kn)}{2}}

= lim n k = 1 n 1 n 1 + k n 2 =\displaystyle\lim_{n\to\infty}\sum_{k=1}^n\frac1n\frac{1+\frac kn}{\sqrt2}

= 0 1 1 + x 2 d x =\displaystyle\int_0^1\frac{1+x}{\sqrt2}dx

= 3 2 4 =\dfrac{3\sqrt2}4

Yep... You need to solve this by Squeeze Theorem.

Pi Han Goh - 5 years, 6 months ago
Carlos Victor
Jun 12, 2016

I used the Theorem Stolz-Cesaro.

Can you upload your solution

rishabh singhal - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...