Math Archive (11)

Calculus Level 4

Given that

S = 1 1 x 4 ( 1 x ) 4 1 + x 2 d x , M = 0 1 x 6 1 + x 2 d x \large S = \int_{-1}^{1}\frac{x^{4}(1-x)^{4}}{1+x^{2}} \, dx, \quad \quad M = \int_{0}^{1}\frac{x^{6}}{1+x^{2}}\, dx

Find the value of S 12 M \lfloor S-12M \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function .

0 None of these 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 12, 2017

S = 1 1 x 4 ( 1 x ) 4 1 + x 2 d x By identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 1 1 ( x 4 ( 1 x ) 4 1 + x 2 + x 4 ( 1 + x ) 4 1 + x 2 ) d x = 1 1 x 4 + 6 x 6 + x 8 1 + x 2 d x = 1 1 x 4 + x 8 1 + x 2 d x + 1 1 6 x 6 1 + x 2 d x Since 6 x 6 1 + x 2 is even, = 1 1 ( x 6 x 4 + 2 x 2 2 + 2 x 2 + 1 ) d x + 12 0 1 x 6 1 + x 2 d x = x 7 7 x 5 5 + 2 x 3 3 2 x + 2 tan 1 x 1 1 + 12 M = 2 7 2 5 + 4 3 4 + π + 12 M 0.3606 + 12 M \begin{aligned} S & = \int_{-1}^1 \frac {x^4(1-x)^4}{1+x^2} dx & \small \color{#3D99F6} \text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_{-1}^1 \left(\frac {x^4(1-x)^4}{1+x^2} + \frac {x^4(1+x)^4}{1+x^2} \right) dx \\ & = \int_{-1}^1 \frac {x^4+6x^6+x^8}{1+x^2} \ dx \\ & = \int_{-1}^1 \frac {x^4+x^8}{1+x^2} \ dx + \color{#3D99F6} \int_{-1}^1 \frac {6x^6}{1+x^2} \ dx & \small \color{#3D99F6} \text{Since } \frac {6x^6}{1+x^2} \text{ is even,} \\ & = \int_{-1}^1 \left(x^6-x^4+2x^2-2+\frac 2{x^2+1} \right) dx + \color{#3D99F6} 12 \int_0^1 \frac {x^6}{1+x^2} \ dx \\ & = \frac {x^7}7 - \frac {x^5}5 + \frac {2x^3}3 - 2x + 2\tan^{-1} x \ \bigg|_{-1}^1 + 12 M \\ & = \frac 27 - \frac 25 + \frac 43 - 4 + \pi + 12 M \\ & \approx 0.3606 + 12 M \end{aligned}

S 12 M = 0.3603 = 0 \implies \lfloor S-12M\rfloor = \lfloor 0.3603 \rfloor = \boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...