Find the area between the curves and for which .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Given that { y = x 2 + x − 2 y = 2 x . . . ( 1 ) . . . ( 2 )
( 1 ) = ( 2 ) : x 2 + x − 2 x 2 − x − 2 ( x + 1 ) ( x − 2 ) = 2 x = 0 = 0
Therefore, the bound area by y = x 2 + x − 2 and y = 2 x is between − 1 ≤ x ≤ 2 . We need to find the range of x that satisfies ∣ x 2 + x − 2 ∣ + ∣ 2 x ∣ = ∣ x 2 + 3 x − 2 ∣ . Let us consider the L H S of the equation.
∣ x 2 + x − 2 ∣ + ∣ 2 x ∣ = ∣ ( x + 2 ) ( x − 1 ) ∣ + ∣ 2 x ∣ = ⎩ ⎪ ⎨ ⎪ ⎧ x 2 + x − 2 + 2 x = x 2 + 3 x − 2 = R H S − ( x 2 + x − 2 ) + 2 x = − x 2 + x + 2 = R H S − ( x 2 + x − 2 ) − 2 x = − ( x 2 + 3 x − 2 ) = R H S for x ≥ 1 for 0 ≤ x < 1 for − 2 ≤ x < 0
Note that for − 2 ≤ x < 0 , x 2 + 3 x − 2 < 0 ⟹ − ( x 2 + 3 x − 2 ) = ∣ x 2 + 3 x − 2 ∣ = R H S .
Therefore, the ranges of x that satisfy ∣ x 2 + x − 2 ∣ + ∣ 2 x ∣ = ∣ x 2 + 3 x − 2 ∣ are − 1 ≤ x ≤ 0 and 1 ≤ x ≤ 2 and the area bounded by the ranges is:
A = ∣ ∣ ∣ ∣ ∫ − 1 0 ( x 2 + x − 2 − 2 x ) d x ∣ ∣ ∣ ∣ + ∣ ∣ ∣ ∣ ∫ 1 2 ( x 2 + x − 2 − 2 x ) d x ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∫ − 1 0 ( x 2 − x − 2 ) d x ∣ ∣ ∣ ∣ + ∣ ∣ ∣ ∣ ∫ 1 2 ( x 2 − x − 2 ) d x ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ 3 x 3 − 2 x 2 − 2 x ∣ ∣ ∣ ∣ − 1 0 ∣ ∣ ∣ ∣ ∣ + ∣ ∣ ∣ ∣ ∣ 3 x 3 − 2 x 2 − 2 x ∣ ∣ ∣ ∣ 1 2 ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ 0 − 6 7 ∣ ∣ ∣ ∣ + ∣ ∣ ∣ ∣ − 6 2 0 + 6 1 3 ∣ ∣ ∣ ∣ = 6 7 + 6 7 = 3 7