J n = ∫ 0 2 π ( 1 − sin ( x ) ) n sin ( 2 x ) d x Find n = 0 ∑ ∞ J n
Try my set Math Archive
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Exactly the same way ! Nice
@Shivam Jadhav please dont plagarize others problem , read this
S
=
n
=
0
∑
∞
∫
0
2
π
sin
(
2
x
)
(
1
−
sin
(
x
)
)
n
d
x
S
=
∫
0
2
π
sin
(
2
x
)
n
=
0
∑
∞
(
1
−
sin
(
x
)
)
n
d
x
This is an infinite geometric progression with common ratio
(
1
−
sin
(
x
)
)
∴
S
=
∫
0
2
π
sin
(
2
x
)
1
−
(
1
−
sin
(
x
)
)
1
d
x
=
2
∫
0
2
π
cos
(
x
)
d
x
=
2
Problem Loading...
Note Loading...
Set Loading...
Put sin x = t . J n = 2 ∫ 0 1 t ( 1 − t ) n d t = 2 ⎝ ⎜ ⎛ ∫ 0 1 ( 1 − t ) n d t − ∫ 0 1 ( 1 − t ) n + 1 ( 1 − t ) ( 1 − t ) n d t ⎠ ⎟ ⎞ = 2 ( ∫ 0 1 t n d t − ∫ 0 1 t n + 1 d t ) = 2 ( n + 1 1 − n + 2 1 )
∴ n = 0 ∑ ∞ J n = 2 n = 0 ∑ ∞ ( n + 1 1 − n + 2 1 )
( A T e l e s c o p i c S e r i e s )
= 2 ( 1 ) = 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆