Math archive (7)

Calculus Level 4

J n = 0 π 2 ( 1 sin ( x ) ) n sin ( 2 x ) d x J_{n}=\int_{0}^{\frac{\pi}{2}}(1- \sin(x))^{n} \sin(2x)dx Find n = 0 J n \sum_{n=0}^{\infty}J_{n}

Try my set Math Archive


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Apr 19, 2016

Put sin x = t \sin x=t . J n = 2 0 1 t ( 1 t ) n d t = 2 ( 0 1 ( 1 t ) n d t 0 1 ( 1 t ) ( 1 t ) n ( 1 t ) n + 1 d t ) J_n=2\displaystyle\int_0^1t(1-t)^n\mathrm{d}t\\=2\left(\displaystyle\int_0^1(1-t)^n\mathrm{d}t-\displaystyle\int_0^1\underbrace{(1-t)(1-t)^n}_{(1-t)^{n+1}}\mathrm{d}t\right) = 2 ( 0 1 t n d t 0 1 t n + 1 d t ) = 2\left(\displaystyle\int_0^1t^n\mathrm{d}t-\displaystyle\int_0^1t^{n+1}\mathrm{d}t\right) = 2 ( 1 n + 1 1 n + 2 ) =2\left(\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)

n = 0 J n = 2 n = 0 ( 1 n + 1 1 n + 2 ) \large\therefore\displaystyle\sum_{n=0}^{\infty}J_n=2\displaystyle\sum_{n=0}^{\infty}\left(\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)

( A T e l e s c o p i c S e r i e s ) \large\mathcal{(A~Telescopic ~Series)}

= 2 ( 1 ) = 2 \huge =2(1)=\boxed 2 \LARGE\color{#D61F06}{\star\star\star\star\star\star}

Exactly the same way ! Nice

Muhammad Ahmad - 5 years, 1 month ago

Log in to reply

Great... Thanks.. ;-)

Rishabh Jain - 5 years, 1 month ago

S = n = 0 0 π 2 sin ( 2 x ) ( 1 sin ( x ) ) n d x S = \displaystyle \sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}}\sin(2x)(1-\sin(x))^{n}dx
S = 0 π 2 sin ( 2 x ) n = 0 ( 1 sin ( x ) ) n d x S = \displaystyle \int_{0}^{\frac{\pi}{2}}\sin(2x)\sum_{n=0}^{\infty}(1-\sin(x))^{n}dx
This is an infinite geometric progression with common ratio ( 1 sin ( x ) ) (1-\sin(x))
S = 0 π 2 sin ( 2 x ) 1 1 ( 1 sin ( x ) ) d x = 2 0 π 2 cos ( x ) d x = 2 \therefore S = \displaystyle \int_{0}^{\frac{\pi}{2}} \sin(2x)\dfrac{1}{1-(1-\sin(x))}dx = \displaystyle 2\int_{0}^{\frac{\pi}{2}}\cos(x)dx = 2


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...