Math Archive (8)

Calculus Level 4

1 + x 2 3 4 2 x + 4 x 4 d x = a x + b + c ( tan 1 ( x + d ) ) + c o n s t a n t \large \int\frac{1+x^{2}}{3-4\sqrt{2}x+4x^{4}} dx =\frac{a}{x+b}+c \left(\tan^{-1}(x+d)\right)+\color{grey}constant Find a + b + c + d a+b+c+d .

Try my set Math Archive .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = x 2 + 1 4 x 4 4 2 x + 3 d x = x 2 + 1 ( 2 x 2 2 2 x + 3 ) ( 2 x 2 + 2 2 x + 1 ) d x By partial fraction decomposition = 1 4 ( 1 2 x 2 2 2 x + 1 + 1 2 x 2 + 2 2 x + 3 ) d x = 1 4 ( 1 ( 2 x 1 ) 2 + 1 ( 2 x + 1 ) 2 + 2 ) d x = 1 8 ( 1 ( x 1 2 ) 2 + 1 ( x + 1 2 ) 2 + 1 ) d x = 1 8 x 1 2 + 1 8 tan 1 ( x + 1 2 ) + C where C is the constant of integration. \begin{aligned} I & = \int \frac {x^2+1}{4x^4-4\sqrt 2 x+3}dx \\ & = \int \frac {x^2+1}{\left(2x^2-2\sqrt 2 x+3\right)\left(2x^2+2\sqrt 2 x+1\right)}dx & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \frac 14 \int \left(\frac 1{2x^2-2\sqrt 2 x+1} + \frac 1{2x^2+2\sqrt 2 x+3} \right) dx \\ & = \frac 14 \int \left(\frac 1{(\sqrt 2x-1)^2} + \frac 1{(\sqrt 2x+1)^2+2} \right) dx \\ & = \frac 18 \int \left(\frac 1{(x-\frac 1{\sqrt 2})^2} + \frac 1{(x+ \frac 1{\sqrt 2})^2+1} \right) dx \\ & = \frac {-\frac 18}{x- \frac 1{\sqrt 2}} + \frac 18 \tan^{-1} \left(x + \frac 1{\sqrt 2} \right) + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \end{aligned}

Therefore, a + b + c + d = 1 8 1 2 + 1 8 + 1 2 = 0 a+b+c+d = - \dfrac 18 - \dfrac 1{\sqrt 2} + \dfrac 18 + \dfrac 1{\sqrt 2} = \boxed 0 ,

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...