Math Archive

Algebra Level 3

Consider a real valued function f ( x ) f(x) satisfying , 2 f ( x y ) = ( f ( x ) ) y + ( f ( y ) ) x 2f(xy)=(f(x))^{y}+(f(y))^{x} for all x , y x,y belonging to the set of real numbers . And f ( 1 ) = 2 f(1)=2 , then find ( r = 1 15 f ( r ) ) + 1000 (\sum_{r=1}^{15} f (r))+1000


The answer is 66534.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From 2 f ( x y ) = ( ( f ( x ) ) y + ( f ( y ) ) x \quad 2f(xy) = ((f(x))^y + (f(y))^x

2 f ( 1 ˙ y ) = ( f ( 1 ) ) y + ( f ( y ) ) 1 2 f ( y ) = 2 y + f ( y ) f ( y ) = 2 y r = 1 15 f ( r ) + 1000 = r = 1 15 2 r + 1000 = 2 16 1 2 1 1 + 1000 = 66534 \begin{aligned} \Rightarrow 2f(1\dot{}y) & = (f(1))^y + (f(y))^1 \\ 2f(y) & = 2^y + f(y) \\ \Rightarrow f(y) & = 2^y \\ \sum_{r=1}^{15} {f(r)} + 1000 & = \sum_{r=1}^{15} {2^r} + 1000 \\ & = \frac{2^{16}-1}{2-1} -1 + 1000 \\ & = \boxed{66534} \end{aligned}

Rohan Shah
May 6, 2015

Just take f(2)= 2X1; f(3) = 3X1...... so by substitute in 2f(xy) = f(x) ^y + f(y) ^x so, y = 1 and x = 2,3,4.....15 hence you will get; f(1) + f(2)+....+f(15)= 2 + 2^2 + 2^3 +....+ 2^15. As it forms a G.P.; summation equals to 65534 and add 1000.... so; 66534

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...