sin − 1 ( x ) + sin − 1 ( 2 x ) = 3 π Find the number of solutions of above equation. Try my set Math Archive
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Graphical solution is smarter and feasible approach .
Let { sin − 1 ( x ) = α sin − 1 ( 2 x ) = β ⇒ sin α = x ⇒ sin β = 2 x ⇒ α + β = 3 π
Now, we have:
sin β sin ( 3 π − α ) 2 3 cos α − 2 1 sin α 2 3 cos α ⇒ tan α α ⇒ sin − 1 ( x ) sin − 1 ( 2 x ) = 2 x = 2 sin α = 2 sin α = 2 5 sin α = 5 3 = tan − 1 5 3 ≈ 0 . 3 3 3 5 rad ≈ 0 . 7 1 3 7 rad
As sin − 1 ( x ) ∈ [ − 2 π , 2 π ] and the other solutions are in the third quadrant, there is only 1 solution to the equation.
Problem Loading...
Note Loading...
Set Loading...
sin − 1 x + sin − 1 ( 2 x ) = cos ( sin − 1 x + sin − 1 ( 2 x ) ) = cos ( sin − 1 x ) cos ( sin − 1 ( 2 x ) ) − sin ( sin − 1 x ) sin ( sin − 1 ( 2 x ) ) = ( 1 − x 2 ) ( 1 − 4 x 2 ) − x ( 2 x ) = 1 − 5 x 2 + 4 x 4 = 4 x 4 − 5 x 2 + 1 = − 7 x 2 = x 2 = x = 3 π cos ( 3 π ) 2 1 2 1 2 x 2 + 2 1 4 x 4 + 2 x 2 + 4 1 − 4 3 2 8 3 ± 2 1 7 3
But sin − 1 ( − x ) = − sin − 1 x and sin − 1 ( − 2 x ) = − sin − 1 ( 2 x ) . Thus, − 2 1 7 3 is cannot be the value of x implying that the value of sin − 1 x + sin − 1 ( 2 x ) = 3 π satisfying is x = 2 1 7 3 .
Hence, this equation has only one solution.
Notes:
cos ( x + y ) = cos x cos y − sin x sin y
cos ( sin − 1 x ) = 1 − x 2 , − 1 ≤ x ≤ 1
cos ( sin − 1 ( 2 x ) ) = 1 − ( 2 x ) 2 = 1 − 4 x 2 , − 2 1 ≤ x ≤ 2 1
sin ( sin − 1 x ) = x
sin ( sin − 1 ( 2 x ) ) = 2 x