Math Counts 4

If a convex polygon has 17 sides how many diagonals does it have?


The answer is 119.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hana Wehbi
Nov 1, 2018

( 17 2 ) = 136 17 = 119 \binom{17}{2}=136 -17=119

Every two points define an edge; therefore, we have 136 edges minus the 17 sides of the polygon we get 119 diagonals.

Henry U
Oct 31, 2018

Every diagonal is defined by its two endpoints, so we have to count the number of ways to choose 2 out of 17 points, with the restriction that we can't choose the same point twice and also no two adjacent points.

There are 17 17 possibilities for the first point and 17 3 = 14 17-3 = 14 for the second point, but with that we're counting every diagonal twice, so we have to divide by 2 2 . In total, there are 17 14 2 = 119 \frac {17 \cdot 14} 2 = \boxed{119} diagonals.

By the way, shouldn't this problem be question #4?

Henry U - 2 years, 7 months ago

Log in to reply

no we have problem 4

Eric Zhu - 2 years, 7 months ago
Eric Zhu
Nov 5, 2018
mastergamerez mastergamerez

||mastergamerez||mastergamerez| ||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez| ||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez| ||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez| ||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez| ||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|||mastergamerez||mastergamerez|| ||mastergamerez||mastergamerez|

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...