Math Entrance Limit

Calculus Level 3

Compute lim h 0 1 h 1 1 + 2 h e x sin ( π x 3 ) d x \displaystyle \lim_{h\to 0} \frac{1}{h} \int_1^{1+2h} e^{\sqrt{x}}\sin \left(\frac{\pi {x}}{3}\right) dx .

0 4.708 2.718 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 25, 2019

Let f ( x ) = e x sin ( π x 3 ) d x f(x) = e^{\sqrt x}\sin \left(\dfrac {\pi x}3\right) \ dx and F ( x ) = 0 x f ( t ) d t \displaystyle F(x) = \int_0^x f(t) \ dt . Then we have:

L = lim h 0 1 h 1 1 + 2 h e x sin ( π x 3 ) d x = lim h 0 F ( 1 + 2 h ) F ( 1 ) h = 2 lim h 0 F ( 1 + 2 h ) F ( 1 ) 2 h By definition of differentiation = 2 f ( 1 ) = 2 e sin π 3 4.708 \begin{aligned} L & = \lim_{h \to 0} \frac 1h \int_1^{1+2h} e^{\sqrt x}\sin \left(\dfrac {\pi x}3\right) \ dx \\ & = \lim_{h \to 0} \frac {F(1+2h) - F(1)}h \\ & = 2 \color{#3D99F6} \lim_{h \to 0} \frac {F(1+2h) - F(1)}{2h} & \small \color{#3D99F6} \text{By definition of differentiation} \\ & = 2 \color{#3D99F6} f(1) \\ & = 2e\sin \frac \pi 3 \\ & \approx \boxed{4.708} \end{aligned}

@Mukhammadsaid Jr. , you can enter as \displaystyle \lim {h\to 0} \frac 1h \int 1^{1+2h} e^{\sqrt x}\sin \left(\frac{\pi x}3 \right) dx lim h 0 1 h 1 1 + 2 h e x sin ( π x 3 ) d x \displaystyle \lim_{h\to 0} \frac 1h \int_1^{1+2h} e^{\sqrt x}\sin \left(\frac{\pi x}3 \right) dx . Note that a lot of { } are unnecessary. \left and \right automatically adjust the brackets size. If you are using \ [ \ ] \backslash [ \ \backslash ] instead of \ ( \ ) \backslash ( \ \backslash ) , the \displaystyle is not necessary but the formula will be centralized as follows:

lim h 0 1 h 1 1 + 2 h e x sin ( π x 3 ) d x \lim_{h\to 0} \frac 1h \int_1^{1+2h} e^{\sqrt x}\sin \left(\frac{\pi x}3 \right) dx

Chew-Seong Cheong - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...