"MATH" IS AWESOME!

Algebra Level 5

Give the sum!(round to 2 decimal places)


The answer is -3.67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 12, 2014

4 x 2 + 15 x + 17 x 2 + 4 x + 12 = 5 x 2 + 16 x + 18 2 x 2 + 5 x + 13 \dfrac {4x^2+15x+17} {x^2+4x+12} = \dfrac {5x^2+16x+18} {2x^2+5x+13}

4 x 2 + 15 x + 17 x 2 + 4 x + 12 = 4 x 2 + 15 x + 17 + x 2 + x + 1 x 2 + 4 x + 12 + x 2 + x + 1 \Rightarrow \dfrac {4x^2+15x+17} {x^2+4x+12} = \dfrac {4x^2+15x+17 + x^2 + x + 1} {x^2+4x+12 + x^2+x+1}

( 4 x 2 + 15 x + 17 ) ( x 2 + 4 x + 12 ) + ( 4 x 2 + 15 x + 17 ) ( x 2 + x + 1 ) = ( 4 x 2 + 15 x + 17 ) ( x 2 + 4 x + 12 ) + ( x 2 + 4 x + 12 ) ( x 2 + x + 1 ) (4x^2+15x+17) (x^2+4x+12)+ (4x^2+15x+17)(x^2+x+1) = (4x^2+15x+17)(x^2+4x+12) + (x^2+4x+12)(x^2+x+1)

( 4 x 2 + 15 x + 17 ) ( x 2 + x + 1 ) = ( x 2 + 4 x + 12 ) ( x 2 + x + 1 ) (4x^2+15x+17)(x^2+x+1) = (x^2+4x+12)(x^2+x+1)

4 x 2 + 15 x + 17 = x 2 + 4 x + 12 3 x 2 + 11 x + 5 = 0 4x^2+15x+17 = x^2+4x+12 \quad \Rightarrow 3x^2+11x+5 = 0

x = 11 ± 121 60 6 = 11 ± 61 6 \Rightarrow x = \dfrac {-11 \pm \sqrt{121-60} }{6} = \dfrac {-11 \pm \sqrt{61} }{6}

The required solution = 11 + 61 6 + 11 61 6 = 11 3 3.67 \frac {-11 + \sqrt{61} }{6} + \frac {-11 - \sqrt{61} }{6} = \frac{-11}{3} \approx \boxed {-3.67}

@Chew-Seong Cheong Sir nice solution, i was thinking one with vieta formula but nice solution!!

Mardokay Mosazghi - 6 years, 8 months ago

You can't just ignore the (x^2+x+1)!

Kenny Lau - 6 years, 7 months ago

Log in to reply

There are no real solutions to x 2 + x + 1 = 0 x^2 + x + 1 = 0

Calvin Lin Staff - 6 years, 7 months ago
Akul Agrawal
Nov 2, 2015

Just applied componendo-dividendo

4 x 2 + 15 x + 17 ( x 2 + 4 x + 12 ) 4 x 2 + 15 x + 17 + ( x 2 + 4 x + 12 ) = 5 x 2 + 16 x + 18 ( 2 x 2 + 5 x + 18 ) 5 x 2 + 16 x + 18 + ( 2 x 2 + 5 x + 18 ) 3 x 2 + 11 x + 5 5 x 2 + 19 x + 29 = 3 x 2 + 11 x + 5 7 x 2 + 21 x + 31 \frac { 4{ x }^{ 2 }+15x+17-({ x }^{ 2 }+4x+12) }{ 4{ x }^{ 2 }+15x+17+({ x }^{ 2 }+4x+12) } =\frac { 5{ x }^{ 2 }+16x+18-(2{ x }^{ 2 }+5x+18) }{ 5{ x }^{ 2 }+16x+18+(2{ x }^{ 2 }+5x+18) } \\ \Rightarrow \frac { 3{ x }^{ 2 }+11x+5 }{ 5{ x }^{ 2 }+19x+29 } =\frac { 3{ x }^{ 2 }+11x+5 }{ 7{ x }^{ 2 }+21x+31 }

Now the factors are easily visible.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...