Math is Radical!

Algebra Level 4

104 6 + 468 10 + 144 15 + 2006 = a 2 + b 3 + c 5 \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006} = a\sqrt{2}+b\sqrt{3}+c\sqrt{5} where a , b , a, b, and c c are positive integers. Find a b c abc .


The answer is 936.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Personal Data
May 12, 2015

Squaring both sides we get that:

104 6 + 468 10 + 144 15 + 2006 = 2 a 2 + 3 b 2 + 5 c 2 + 2 6 a b + 2 10 a c + 2 15 b c 104\sqrt { 6 } +468\sqrt { 10 } +144\sqrt { 15 } +2006=2{ a }^{ 2 }+3{ b }^{ 2 }+5{ c }^{ 2 }+2\sqrt { 6 } ab+2\sqrt { 10 } ac+2\sqrt { 15 } bc

Since a , b , c a,b,c are integers then

2 6 a b = 104 6 a b = 52 2\sqrt { 6 } ab=104\sqrt { 6 } \Rightarrow ab=52

2 10 a c = 468 6 a c = 234 2\sqrt { 10 } ac=468\sqrt { 6 } \Rightarrow ac=234

2 15 b c = 144 15 b c = 72 2\sqrt { 15 } bc=144\sqrt { 15 } \Rightarrow bc=72

From this it's easy to find the values of a , b , c a,b,c which are equal to 13 , 4 , 18 13,4,18 respectively.

Therefore a b c = 936 abc=936

It it not necessary to solve for the variables. Knowing that

a b = 234 ab = 234

a c = 234 ac=234

b c = 72 bc=72 ,

we can just say that a b a c b c = 52 ( 234 ) ( 72 ) ( a b c ) 2 = 876096 a b c = 936 abacbc=52(234)(72) \Rightarrow (abc)^2=876096\Rightarrow abc = \boxed{936} .

Alex Delhumeau - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...