Math Marathon Warmup

Geometry Level 3

1 0 2 2 sin ( 1 0 ) cos ( 2 1 0 ) sin ( 3 1 0 ) cos ( 4 1 0 ) = ? 10^{2^2} \sin(10^{\circ})\cos(2\cdot 10^{\circ})\sin(3\cdot 10^{\circ})\cos(4\cdot 10^{\circ}) = \, ?


The Math Marathon (MM) has begun and with it a question from around the math world! And just to get started, and here's the warmup question.
Stay tuned for more updates posted every few days!


The answer is 625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Timothy Wan
Mar 13, 2016

It is necessary to know that 2 sin x cos x = sin 2 x 2\sin x \cos x=\sin 2x or in another form, sin x cos x = 1 2 sin 2 x \sin x \cos x =\frac{1}{2} \sin 2x 1 0 2 2 sin ( 1 0 ) cos ( 2 1 0 ) sin ( 3 1 0 ) cos ( 4 1 0 ) 10^{2^2} \sin(10^{\circ})\cos(2\cdot 10^{\circ})\sin(3\cdot 10^{\circ})\cos(4\cdot 10^{\circ}) = 10000 sin ( 1 0 ) cos ( 1 0 ) cos ( 2 0 ) sin ( 3 0 ) cos ( 4 0 ) cos ( 1 0 ) = 10000 \frac{\sin(10^{\circ})\cos(10^{\circ})\cos(20^{\circ})\sin(30^{\circ})\cos(40^{\circ})}{\cos(10^{\circ})} = 5000 sin ( 2 0 ) cos ( 2 0 ) sin ( 3 0 ) cos ( 4 0 ) cos ( 1 0 ) = 5000\frac{\sin(20^{\circ})\cos(20^{\circ})\sin(30^{\circ})\cos(40^{\circ})}{\cos(10^{\circ})} = 2500 sin ( 4 0 ) cos ( 4 0 sin ( 3 0 ) cos ( 1 0 ) = 2500\frac{\sin(40^{\circ})\cos(40^{\circ}\sin(30^{\circ})}{\cos(10^{\circ})} = 1250 sin ( 8 0 ) sin ( 3 0 ) cos ( 1 0 ) = 1250\frac{\sin(80^{\circ})\sin(30^{\circ})}{\cos(10^{\circ})} = 1250 cos ( 1 0 ) sin ( 3 0 ) cos ( 1 0 ) = 1250\frac{\cos(10^{\circ})\sin(30^{\circ})}{\cos(10^{\circ})} (as sin x = cos ( 9 0 x ) \sin x=\cos(90^{\circ}-x) = 1250 sin ( 3 0 ) = 1250\sin(30^{\circ}) = 1250 1 2 = 625 = 1250 \cdot \frac{1}{2}=625 \blacksquare

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...