Math Problem from a magazine

Algebra Level 3

Positive real numbers a a and b b are such that a + b = 5 4 a+b=\dfrac{5}{4} . Find the minimum value of

P = 4 a + 1 4 b P=\dfrac{4}{a}+\frac{1}{4b}

Bonus: Show as many ways to solve this problem as possible.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jul 16, 2019

Method 1: By Titu's lemma

1 2 a + 1 2 a + 1 2 a + 1 2 a + 1 2 4 b ( 1 + 1 + 1 + 1 + 1 ) 2 4 ( a + b ) = 5 2 4 × 5 4 = 5 Equality occurs when a = 1 , b = 1 4 \begin{aligned} \frac {1^2}a + \frac {1^2}a + \frac {1^2}a + \frac {1^2}a + \frac {1^2}{4b} & \ge \frac {(1+1+1+1+1)^2}{4(a+b)} = \frac {5^2}{4 \times \frac 54} = \boxed 5 & \small \color{#3D99F6} \text{Equality occurs when }a=1, b=\frac 14 \end{aligned}

Method 2: By AM-HM inequality

5 1 a + 1 a + 1 a + 1 a + 1 4 b a + a + a + a + 4 b 5 4 a + 1 4 b 5 2 4 ( a + b ) = 5 Equality occurs when a = 1 , b = 1 4 \begin{aligned} \frac 5{\frac 1a + \frac 1a + \frac 1a + \frac 1a + \frac 1{4b}} & \le \frac {a+a+a+a+4b}5 \\ \implies \frac 4a + \frac 1{4b} & \ge \frac {5^2}{4(a+b)} = \boxed 5 & \small \color{#3D99F6} \text{Equality occurs when }a=1, b=\frac 14 \end{aligned}

Method 3: By Hölder's inequality

( 1 a + 1 a + 1 a + 1 a + 1 4 b ) ( a + a + a + a + 4 b ) ( 1 + 1 + 1 + 1 + 1 ) 2 ( 4 a + 1 4 b ) ( 4 ) ( a + b ) 25 4 a + 1 4 b 5 Equality occurs when a = 1 , b = 1 4 \begin{aligned} \left(\frac 1a + \frac 1a + \frac 1a + \frac 1a + \frac 1{4b}\right)(a+a+a+a+4b) & \ge (1+1+1+1+1)^2 \\ \left(\frac 4a + \frac 1{4b}\right)(4)(a+b) & \ge 25 \\ \implies \frac 4a + \frac 1{4b} & \ge \boxed 5 & \small \color{#3D99F6} \text{Equality occurs when }a=1, b=\frac 14 \end{aligned}

David Vreken
Jul 16, 2019

Method 1: Using Derivatives

a + b = 5 4 b = 5 4 a a + b = \frac{5}{4} \rightarrow b = \frac{5}{4} - a

P = 4 a + 1 4 ( 5 4 a ) = 4 a + 1 5 4 a P = \frac{4}{a} + \frac{1}{4(\frac{5}{4} - a)} = \frac{4}{a} + \frac{1}{5 - 4a}

P = 4 a 2 + 4 ( 5 4 a ) 2 = 0 (and P > 0 for 0 < a 5 4 ) a = 1 P = 5 P' = -\frac{4}{a^2} + \frac{4}{(5 - 4a)^2} = 0 \text{ (and } P'' > 0 \text{ for } 0 < a \leq \frac{5}{4}) \rightarrow a = 1 \rightarrow P = \boxed{5}

Method 2: Using Derivatives

a + b = 5 4 a = 5 4 b a + b = \frac{5}{4} \rightarrow a = \frac{5}{4} - b

P = 4 5 4 b + 1 4 b = 16 5 4 b + 1 4 b P = \frac{4}{\frac{5}{4} - b} + \frac{1}{4b} = \frac{16}{5 - 4b} + \frac{1}{4b}

P = 64 ( 5 4 b ) 2 1 4 b 2 = 0 (and P > 0 for 0 < b 5 4 ) b = 1 4 P = 5 P' = \frac{64}{(5 - 4b)^2} - \frac{1}{4b^2} = 0 \text{ (and } P'' > 0 \text{ for } 0 < b \leq \frac{5}{4}) \rightarrow b = \frac{1}{4} \rightarrow P = \boxed{5}

Method 3: Using Graphing Technology

Graph P = 4 a + 1 5 4 a P = \frac{4}{a} + \frac{1}{5 - 4a} from Method 1

Method 4: Using Graphing Technology

Graph P = 16 5 4 b + 1 4 b P = \frac{16}{5 - 4b} + \frac{1}{4b} from Method 2

Alice Smith
Jul 16, 2019

P = 4 a + 1 4 b = 4 5 ( a + b ) ( 4 a + 1 4 b ) = 4 5 ( 4 + 1 4 + 4 b a + a 4 b ) 4 5 ( 4 + 1 4 + 2 4 b a a 4 b ) ( B y A M G M I n e q u a l i t y ) = 4 5 × 25 4 = 5 P = \dfrac{4}{a}+\dfrac{1}{4b} \\ = \dfrac{4}{5}(a+b)(\dfrac{4}{a}+\dfrac{1}{4b}) \\ = \dfrac{4}{5}(4+\dfrac{1}{4}+\dfrac{4b}{a}+\dfrac{a}{4b}) \\ ≥ \dfrac{4}{5}(4+\dfrac{1}{4}+2\sqrt{\dfrac{4b}{a}·\dfrac{a}{4b}}) \ \ (By \ AM-GM \ Inequality) \\ = \dfrac{4}{5}×\dfrac{25}{4} \\ = \boxed{5}

Notice that this method only works with 2 terms. To solve cases with over 3 terms, we need to consult Cauchy-Schwarz Inequality, or Titu's lemma.

Alice Smith - 1 year, 1 month ago

Duy Vu
Jul 16, 2019
  • Solution 1: 4/a + 1/4b = 4^2/4a + 1^2/4b >= (4+1)^2 / 4(a+b) = 5

  • Solution 2: 4/a + 4a >= 8, 1/4b + 4b >= 2 => 4/a + 1/4b + 4(a+b) >= 10 => P >= 10 - 4*5/4 = 5

  • Min P = 5 when a = 1, b = 1/4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...