Math Series #5

Find the last digit of 1 8 205 1 2 94 18^{205} - 12^{94} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 10, 2021

Let the given number be N N . Then

N 1 8 205 4 2 94 ( m o d 10 ) 8 205 2 94 ( m o d 10 ) ( 10 2 ) 205 2 94 ( m o d 10 ) 2 205 2 94 ( m o d 10 ) 2 × 2 4 × 51 2 2 × 2 4 × 23 ( m o d 10 ) 2 × 1 6 51 2 2 × 1 6 23 ( m o d 10 ) 2 × 6 51 2 2 × 6 23 ( m o d 10 ) Note that any positive power of 6 always ends with 6. 2 × 6 4 × 6 ( m o d 10 ) 12 24 6 4 ( m o d 10 ) \begin{aligned} N & \equiv 18^{205} - 42^{94} \pmod {10} \\ & \equiv 8^{205} - 2^{94} \pmod {10} \\ & \equiv (10-2)^{205} - 2^{94} \pmod {10} \\ & \equiv -2^{205} - 2^{94} \pmod {10} \\ & \equiv -2 \times 2^{4 \times 51} - 2^2 \times 2^{4 \times 23} \pmod {10} \\ & \equiv -2 \times 16^{51} - 2^2 \times 16^{23} \pmod {10} \\ & \equiv -2 \times \blue{6^{51}} - 2^2 \times \blue{6^{23}} \pmod {10} & \small \blue{\text{Note that any positive power of 6 always ends with 6.}} \\ & \equiv - 2 \times 6 - 4 \times 6 \pmod {10} \\ & \equiv - 12 - 24 \equiv - 6 \equiv \boxed 4 \pmod {10} \end{aligned}

I have edited the problem, can you please edit your solution?

Avner Lim - 3 months ago

Log in to reply

I have done so.

Chew-Seong Cheong - 3 months ago
Saad Khondoker
Mar 10, 2021

We just have to consider the powers of last digits of each term. If we work out the last digits of the power of last digit of the base of a term, we will find recurrence.
[The pattern for last digit depends on the power and last digit of base because the last digit comes from the multiplication of the base and the previous power. And among the digits of the base only the last digit is responsible for the last digit of product.]

If we work out for powers of 8 8 we see 8 , 4 , 2 , 6 , 8 , 4 , 2 , . . . . 8, 4, 2, 6, 8, 4, 2,.... and so on as the last digits for power 1 , 2 , 3 , . . . . e t c 1, 2, 3,....etc . It repeats after 4 4 terms. Now we can write 205 = 4 51 + 1 205=4*51+1 . So last digit of 1 8 205 18^{205} is equal to the last digit of 8 1 8^1 which is 8 8 .

Similarly for the 2 n d 2nd term, last digit of powers of 2 2 also repeats after 4 4 terms. Now, 394 = 4 98 + 2 394=4*98+2 . So last digit of 4 2 394 42^{394} is equal to the last digit of 2 2 2^2 which is 4 4 .

So, the last digit is 8 4 = 4 8-4=4 .

I have edited the problem, can you please edit your solution?

Avner Lim - 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...