Mathathon 2020 Problem 4 - Medium

Algebra Level 2

9 x 2 + 12 x + 4 = x 3 + 3 x 2 ( 25 3 1 ) + 3 x ( 25 3 1 ) 2 + ( 25 3 1 ) 3 9x^{2} + 12x + 4 = x^{3} + 3x^{2}\left(\sqrt[3]{25} - 1\right) + 3x \left(\sqrt[3]{25} - 1\right)^{2} + \left(\sqrt[3]{25} - 1\right)^{3}

Find an integer solution of x x to the equation above.

Notation: | \cdot | denotes the absolute value function .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Zakir Husain
Jul 20, 2020

9 x 2 + 12 x + 4 = x 3 + 3 x 2 ( 25 3 1 ) + 3 x ( 25 3 1 ) 2 + ( 25 3 1 ) 3 9x^2+12x+4=x^3+3x^2(\sqrt[3]{25}-1)+3x(\sqrt[3]{25}-1)^2+(\sqrt[3]{25}-1)^3 ( 3 x ) 2 + 2 ( 3 x ) ( 2 ) + 2 2 = x 3 + 3 x 2 ( 25 3 1 ) + 3 x ( 25 3 1 ) 2 + ( 25 3 1 ) 3 (3x)^2+2(3x)(2)+2^2=x^3+3x^2(\sqrt[3]{25}-1)+3x(\sqrt[3]{25}-1)^2+(\sqrt[3]{25}-1)^3 ( 3 x + 2 ) 2 = ( x + 25 3 1 ) 3 a 2 + 2 a b + b 2 = ( a + b ) 2 ; a 3 + 3 a b + 3 a b 2 + b 3 = ( a + b ) 3 (3x+2)^2=(x+\sqrt[3]{25}-1)^3\quad\blue{\because a^2+2ab+b^2=(a+b)^2 ;\space a^3+3a^b+3ab^2+b^3=(a+b)^3} 3 x + 2 = ( x + 25 3 1 ) 3 2 . . . . . . . . [ 1 ] 3x+2=(x+\sqrt[3]{25}-1)^\frac{3}{2}........[1] Let α = x + 25 3 1 \alpha = x+\sqrt[3]{25}-1 x = α 25 3 + 1.......... [ 2 ] \Rightarrow x=\alpha - \sqrt[3]{25}+1..........[2] 3 x + 2 = 3 α 3 25 3 + 3 + 2 = 3 α 3 25 3 + 5 \Rightarrow 3x+2=3\alpha-3\sqrt[3]{25}+3+2=3\alpha -3\sqrt[3]{25}+5 Putting this in [ 1 ] [1] 3 α 3 25 3 + 5 = α 3 2 3\alpha -3\sqrt[3]{25}+5=\alpha^\frac{3}{2} 3 α 3 25 3 + 5 = α α 3\alpha -3\sqrt[3]{25}+5=\alpha\sqrt{\alpha} 3 α α α = 3 25 3 5 3\alpha-\alpha\sqrt{\alpha}=3\sqrt[3]{25}-5

α ( 3 α ) = 25 3 ( 3 5 25 3 ) {\alpha}({3}-{\sqrt{\alpha}})={\sqrt[3]{25}}({3}-{\dfrac{5}{\sqrt[3]{25}}})

α ( 3 α ) = 25 3 ( 3 25 3 ) 5 25 3 = 5 5 2 3 = 5 1 2 3 = 5 1 3 = ( ( 5 1 3 ) 2 ) 1 2 = + 5 2 3 = 5 2 3 = 25 3 \boxed{\red{\alpha}({3}-\green{\sqrt{\alpha}})=\red{\sqrt[3]{25}}({3}-\green{\sqrt{\sqrt[3]{25}}})}\quad\blue{\because \frac{5}{\sqrt[3]{25}}=\frac{5}{5^\frac{2}{3}}=5^{1-\frac{2}{3}}=5^{\frac{1}{3}}=((5^{\frac{1}{3}})^2)^\frac{1}{2}={^+_-}\sqrt{5^{\frac{2}{3}}}=\sqrt{\sqrt[3]{5^2}}=\sqrt{\sqrt[3]{25}} } Comparing both the sides of the above equation we get α = 25 3 \alpha=\sqrt[3]{25} From [ 2 ] [2] x = 25 3 25 3 + 1 = 1 x=\red{\cancel{\sqrt[3]{25}}}-\red{\cancel{\sqrt[3]{25}}}+1=\boxed{1}

@Percy Jackson

Zakir Husain - 10 months, 3 weeks ago

Log in to reply

@Zakir Husain - Maybe after some sleep, k, bye! (Check the US time right now! also I slept at midnight coz of Mathathon!)

A Former Brilliant Member - 10 months, 3 weeks ago

Uniqueness 5 a bit unique, not entirely unique though
Latex 10 Nice coloring!
No Mistakes 10 The solution has no mistakes
Clarity 10 The solution is clear
Time 7 4th solution
@Zakir Husain 's Total 42 Great!

A Former Brilliant Member - 10 months, 3 weeks ago

Log in to reply

@Abhinandan Shrimal ???, this was my solution, right @Percy Jackson ?

Zakir Husain - 10 months, 3 weeks ago

thanks to edit!

Zakir Husain - 10 months, 3 weeks ago

There were too many solutions for my puny brain to comprehend, so it got mixed up, sorry 'bout that, its edited now!

A Former Brilliant Member - 10 months, 3 weeks ago
Chew-Seong Cheong
Jul 20, 2020

The given equation can be as:

9 x 2 + 12 x + 4 = ( x + 25 3 1 ) 3 9 ( x 2 2 x + 1 ) + 30 x 5 = ( ( x 1 ) + 25 3 ) 3 9 ( x 1 ) 2 + 30 ( x 1 ) + 25 = ( x 1 ) 3 + 3 25 3 ( x 1 ) 2 + 3 ( 25 3 ) 2 ( x 1 ) + 25 Putting x = 1 25 = 25 \begin{aligned} 9x^2 + 12 x + 4 & = \left(x + \sqrt[3]{25} - 1\right)^3 \\ 9(x^2 - 2x + 1) + 30x - 5 & = \left((x - 1) + \sqrt[3]{25} \right)^3 \\ 9(x-1)^2 + 30(x-1) + 25 & = (x-1)^3 + 3 \sqrt[3]{25}(x-1)^2 + 3(\sqrt[3]{25})^2(x-1) + 25 & \small \blue{\text{Putting }x = 1} \\ 25 & = 25 \end{aligned}

Therefore, x = 1 x = 1 is a root and x = 1 |x| = \boxed 1 .

@Chew-Seong Cheong - Sir, do you know if someone else can change my question, like a moderator or staff, because they just made it better by giving the link to the absolute value function, as I hadn't written that.

A Former Brilliant Member - 10 months, 3 weeks ago

Log in to reply

Hi Percy, there are a few moderators and staffs that proofread the problems written by the community. Chew-Seong Cheong is one of the moderators. He is in fact, the best and the most active one.

Brilliant Mathematics Staff - 10 months, 3 weeks ago

Log in to reply

Lorenz W.
Jul 20, 2020

The given equation can be divided into two functions. \text{The given equation can be divided into two functions.}

f ( x ) = 9 x 2 + 12 x + 4 f(x) = 9x^2 + 12x +4 g ( x ) = x 3 + 3 x 2 ( 25 3 1 ) + 3 x ( 25 3 1 ) 2 + ( 25 3 1 ) 3 g(x) = x^3 + 3x^2 \cdot (\sqrt[3]{25} - 1) + 3x \cdot (\sqrt[3]{25} -1)^2 + (\sqrt[3]{25} - 1)^3 z = 25 3 1 ) 3 z = \sqrt[3]{25} - 1)^3

Notice: 4 < 25 3 1 ) 3 \text{Notice:}\quad 4 < \sqrt[3]{25} - 1)^3

f ( x ) = 18 x + 12 f'(x) = 18x + 12 g ( x ) = 3 x 2 + 6 x z + 3 z 2 g'(x) = 3x^2 + 6xz+3z^2

As z>4 and one of our functions has an uneven degree, the other one an even, we can deduce that our graphs will have intersected at least twice until the x-value that is the solution of f’(x)<g’(x). \text{ As z>4 and one of our functions has an uneven degree, the other one an even, we can deduce that our graphs will have intersected at least twice until the x-value that is the solution of f'(x)<g'(x).}

f ( x ) g ( x ) f'(x) \le g'(x)

18 x + 12 3 x 2 + 11 , 4 + 10.83 18x + 12 \le 3x^2 + 11,4 + 10.83 22 , 83 18 x + 3 x 2 11.4 x 22,83 \le-18x + 3x^2 - 11.4x 0 3 x 2 11 , 4 x 22.83 0 \le 3x^2 - 11,4x - 22.83 x 1 1.44 ; x 2 5.24 x_1 \approx 1.44; x_2 \approx -5.24

Of course the solution may be outside the interval [-infinity; 1.44], but it may be worth taking a shot as we have a chance of 0.33 that we find our solution in that interval. \text{Of course the solution may be outside the interval [-infinity; 1.44], but it may be worth taking a shot as we have a chance of 0.33 that we find our solution in that interval.}

Luckily we can make that interval even smaller as x^3 is known to have a lot of negative y-values and f(x) can not have negative values for y.

To be exact, we search for a value of x where g(x) is switching signs. \text{To be exact, we search for a value of x where g(x) is switching signs.}

0 = x 3 + 3 x 2 ( 25 3 1 ) + 3 x ( 25 3 1 ) 2 + ( 25 3 1 ) 3 0 = x^3 + 3x^2 \cdot (\sqrt[3]{25} - 1) +3x \cdot (\sqrt[3]{25} - 1)^2 + (\sqrt[3]{25} - 1)^3 x 1.924 x \approx -1.924

Now that we know that atleast one solution must be inside the interval [-1.924; -1.44]. \text{Now that we know that atleast one solution must be inside the interval [-1.924; -1.44].} Knowing that, we can make a chart with all values of g(x) inside the interval. \text{Knowing that, we can make a chart with all values of g(x) inside the interval.} We will only compute integer values of x as the problem solution is stated to be an integer. \text{ We will only compute integer values of x as the problem solution is stated to be an integer.}

x g(x)
-1 0.7889
0 7.122
1 25

25 is the only integer solution g(x). As f(x) must always have integer solutions we can now check if the point A(1,25) is a point of f(x). \text{25 is the only integer solution g(x). As f(x) must always have integer solutions we can now check if the point A(1,25) is a point of f(x).}

f ( x ) = 9 x 2 + 12 x + 4 f(x) = 9x^2 + 12x + 4 f ( 1 ) = 9 1 + 12 1 + 4 f(1) = 9 \cdot 1 +12 \cdot 1 + 4 f ( 1 ) = 25 f(1) = 25

Answer: x=1 is the integer solution to the equation. \text{ Answer: x=1 is the integer solution to the equation.}

Uniqueness 5 Good job deriving functions and stuff
Latex 10 Good Latex
No Mistakes 10 The solution has no mistakes
Clarity 10 The solution is clear
Time 6 5th solution
@Lorenz W. 's Total 41 Great!
(Sorry, I ran out of ideas on what to write as comments)

A Former Brilliant Member - 10 months, 3 weeks ago

Logic way: \text{\large{Logic way:}}

If you try a decimal in the answer box, then you'll see it only accepts integers.

  • When we try x = 0 \text{ When we try } x = 0 :

0 + 0 + 4 = 0 + 0 + 0 + 24 0 + 0 + 4 = 0 + 0 + 0 + 24

4 and 24 are apart by 20 units \text{4 and 24 are apart by 20 units}


  • When we try x = 1 \text{When we try } x = 1

we get 25 and 61 \text{we get 25 and 61}

they are apart by 36 units. \text{they are apart by 36 units.}

This distance is more than before, which means we are going the wrong way. \text{This distance is more than before, which means we are going the wrong way.}


  • We try x = 1 \text{We try } x = -1

we get 1 = 1 \text{we get} -1 = -1

1 = 1 \huge{|-1| = 1}

YAY!

Zakir Husain - 10 months, 3 weeks ago

Putting x = 1 x=-1 does not gives solution

Zakir Husain - 10 months, 3 weeks ago

Log in to reply

Oh, Thanks @Zakir Husain ! I'll correct it

Abhinandan Shrimal - 10 months, 3 weeks ago

Uniqueness 0 Common approach
Latex 10 Latex = good
No Mistakes 5 Last two paragraph thingy-s are wrong
Clarity 10 everything is clear
Time 8 Third solution
@Abhinandan Shrimal 's Total 33 Nice!

A Former Brilliant Member - 10 months, 3 weeks ago

After some rearrangement, the equation reduces to the form :

x 3 + 3 ( 25 3 4 ) x 2 + 3 ( ( 25 3 1 ) 2 4 ) x + ( ( 25 3 1 ) 3 4 ) = 0 x^3+3(\sqrt[3] {25}-4)x^2+3\left ((\sqrt[3] {25}-1)^2-4\right )x+\left ((\sqrt[3] {25}-1)^3-4\right )=0 .

This is an equation of degree 3 3 , and hence has 3 3 roots . So something specific must be mentioned about the nature of the root wanted as the answer.

It seems from the answer box that an integer root is wanted.

That root of the equation is 1 \boxed 1 .

Uniqueness 10 Rearranging to find its roots is unique
Latex 10 Bold text and box
No Mistakes 10 The solution has no mistakes
Clarity 5 The solution isn't very clear, like how the rearrangement was done, or how 1 is the only integer root
Time 9 2nd solution
@Alak Bhattacharya 's Total 44 Cool!

A Former Brilliant Member - 10 months, 3 weeks ago
Jeff Giff
Jul 19, 2020

So first we factor the RHS. Study the coefficients closely . This is the 3 r d 3^{rd} row of the Pascal’s triangle . So 9 x 2 + 12 x + 4 = ( x + ( 25 3 1 ) ) 3 . 9x^2+12x+4=(x+(\sqrt[3]{25}-1))^3. Then the LHS. It has one zero(root): 2 3 \dfrac{2}{3} . The coefficient of x 2 x^2 is 9. So 9 ( x + 2 3 ) 2 = ( x + ( 25 3 1 ) ) 3 9 ( x + 2 3 ) 2 ( x + ( 25 3 1 ) ) 3 . 9(x+\dfrac{2}{3})^2= (x+(\sqrt[3]{25}-1))^3\Rightarrow\dfrac{9(x+\dfrac{2}{3})^2}{(x+(\sqrt[3]{25}-1))^3}. We want to take the -1 from the 25 3 1 \sqrt[3]{25}-1 away to make 25 25 after cubing. So we test x = 1 x=1 .
Bingo! It matches! \large \text{Bingo! It matches!}
So the answer is 1 \boxed{1} .

Uniqueness 5 Common approach, and brute force method, as you tested the value of x as 1, but you used Pascal Triangle
Latex 8 Latex the text, otherwise it looks a bit boring
No Mistakes 10 Correct answer and no mistakes
Clarity 2 Most things haven't been explained clearly, like the second equation
Time 10 First solution
@Jeff Giff 's Total 35 Nice!

A Former Brilliant Member - 10 months, 3 weeks ago

Log in to reply

@Percy Jackson , if you wouldn't mind, could you LaTeX \LaTeX up the x x in the last line?

Thanks in advance \text{Thanks in advance}

Frisk Dreemurr - 10 months, 3 weeks ago

Log in to reply

I edited again!

A Former Brilliant Member - 10 months, 3 weeks ago

Wait Percy, just realised that my solution used the Pascal’s triangle to factorise so it’s unique, but yeah, the brute force wasn’t the best approach.

Jeff Giff - 10 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...