Mathematical Analysis I - 1-6-7.(3)

Calculus Level 1

Find lim n 5 n n ! \displaystyle \lim_{n \to \infty} \dfrac{5^n}{n!} .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Oct 15, 2020

For n > 6 n>6 :

5 n n ! = 5 n 1 2 3 n < 5 n ( 1 2 5 ) 6 n 5 = 5 5 5 ! ( 5 6 ) n 5 \begin{aligned}\frac{5^n}{n!} &=\frac{5^n}{1\cdot 2\cdot 3\cdots n} \\ &<\frac{5^n}{(1\cdot 2\cdots 5) 6^{n-5}} \\ &=\frac{5^5}{5!} \left(\frac56 \right)^{n-5} \end{aligned}

For any ϵ > 0 \epsilon>0 , we can choose n n large enough so that the last expression is smaller than ϵ \epsilon ; hence the limit is zero .

Chew-Seong Cheong
Oct 16, 2020

We can use Stirling's formula to solve the problem.

L = lim n 5 n n ! By Stirling’s formula: n ! 2 π n ( n e ) n = lim n 5 n 2 π n ( n e ) n = lim n 1 2 π n ( 5 e n ) n = 0 \begin{aligned} L & = \lim_{n \to \infty} \frac {5^n}\blue{n!} & \small \blue{\text{By Stirling's formula: }n! \sim \sqrt{2\pi n}\left(\frac ne \right)^n} \\ & = \lim_{n \to \infty} \frac {5^n}\blue{\sqrt{2\pi n}\left(\frac ne \right)^n} \\ & = \lim_{n \to \infty} \frac 1{\sqrt{2\pi n}}\left(\frac {5e}n \right)^n \\ & = \boxed 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...