Mathematical Analysis I - 4-4-4.(16)

Calculus Level 4

Let

A = 0 4 ( x 2 ) x 2 + 4 x + 1 d x A = \int_{0}^{4} (x-2)\sqrt{x^2+4x+1} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is 61107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 10, 2020

A = 0 4 ( x 2 ) x 2 + 4 x + 1 d x = 0 4 ( x 2 ) ( x + 2 ) 2 3 d x Let u = x + 2 d u = d x = 2 6 ( u 4 ) u 2 3 d u Let u = 3 cosh t d u = 3 sinh t d t = cosh 1 2 3 cosh 1 2 3 3 ( 3 cosh t 4 ) sinh 2 t d t = 3 3 cosh 1 2 3 cosh 1 2 3 cosh t sinh 2 t d t 12 cosh 1 2 3 cosh 1 2 3 sinh 2 t d t = 3 3 1 3 11 sinh 2 t d sinh t 6 cosh 1 2 3 cosh 1 2 3 ( cosh 2 t 1 ) d t = 3 sinh 3 t 1 3 11 6 [ sinh 2 t 2 t ] cosh 1 2 3 cosh 1 2 3 = 11 33 1 3 12 33 + 4 + 6 cosh 1 2 3 6 cosh 1 2 3 = 11 3 33 + 6 ln ( 6 + 33 ) 6 ln 3 6.110772568 \begin{aligned} A & = \int_0^4 (x-2) \sqrt{x^2+4x+1}\ dx \\ & = \int_0^4 (x-2) \sqrt{\blue{(x+2)}^2 - 3}\ dx & \small \blue{\text{Let }u=x+2 \implies du = dx} \\ & = \int_2^6 (u-4)\sqrt{u^2 -3} \ du & \small \blue{\text{Let }u = \sqrt 3 \cosh t \implies du = \sqrt 3 \sinh t \ dt} \\ & = \int_{\cosh^{-1} \frac 2{\sqrt 3}}^{\cosh^{-1} 2\sqrt 3} 3(\sqrt 3 \cosh t - 4) \sinh^2 t \ dt \\ & = 3\sqrt 3 \int_{\cosh^{-1} \frac 2{\sqrt 3}}^{\cosh^{-1} 2\sqrt 3} \cosh t \sinh^2 t \ dt - 12 \int_{\cosh^{-1} \frac 2{\sqrt 3}}^{\cosh^{-1} 2\sqrt 3} \sinh^2 t \ dt \\ & = 3\sqrt 3 \int_{\frac 1{\sqrt 3}}^{\sqrt {11}} \sinh^2 t \ d \sinh t - 6 \int_{\cosh^{-1} \frac 2{\sqrt 3}}^{\cosh^{-1} 2\sqrt 3} (\cosh 2t -1) \ dt \\ & = \sqrt 3 \sinh^3 t \bigg|_{\frac 1{\sqrt 3}}^{\sqrt {11}} - 6 \left[\frac {\sinh 2t}2 - t \right]_{\cosh^{-1} \frac 2{\sqrt 3}}^{\cosh^{-1} 2\sqrt 3} \\ & = 11\sqrt{33} - \frac 13 - 12\sqrt{33} + 4 + 6 \cosh^{-1} 2\sqrt 3 - 6 \cosh^{-1} \frac 2{\sqrt 3} \\ & = \frac {11}3 - \sqrt{33} + 6\ln(6+\sqrt{33}) - 6 \ln 3 \\ & \approx 6.110772568 \end{aligned}

Therefore 10000 A = 61107 \lfloor 10000 A \rfloor = \boxed{61107} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...