Mathematical Enigma - XIX

Algebra Level 3

1 + 5 1 + 6 1 + 7 1 + 8 1 + = ? \large\sqrt { 1+5\sqrt { 1+6\sqrt { 1+7\sqrt { 1+8\sqrt { 1+\cdots } } } } }= \, ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sam Lee
Dec 6, 2015

From ramanujan Nested Radicals Formula we get :

A simple successive elevation to square and subtraction/division leads to

For a demonstration of the Nested Radicals Formula, consider this :

Let f ( x ) = x + 1 f(x) = x+1 . Then

f ( x ) = x + 1 = ( x + 1 ) 2 = x 2 + 2 x + 1 = 1 + x ( x + 2 ) = 1 + x f ( x + 1 ) = 1 + x 1 + ( x + 1 ) f ( x + 2 ) = 1 + x 1 + ( x + 1 ) 1 + ( x + 2 ) f ( x + 3 ) = 1 + x 1 + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + f ( 5 ) = 1 + 5 1 + 6 1 + 7 1 + 8 1 + = 5 + 1 = 6 \begin{aligned} f(x) & = x+1 = \sqrt{(x+1)^2} = \sqrt{x^2+2x+1} = \sqrt{1+x(x+2)} \\ & = \sqrt{1+xf(x+1)} \\ & = \sqrt{1+x\sqrt{1+(x+1)f(x+2)}} \\ & = \sqrt{1+x\sqrt{1+(x+1)\sqrt{1+(x+2)f(x+3)}}} \\ & = \sqrt{1+x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+\cdots}}}}} \\ \implies f(5) & = \sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt {1+ \cdots}}}}} \\ & = 5 + 1 = \boxed 6 \end{aligned}

Substitution from ramanujan series and i got the answer is 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...