Mathematical Fallacy: Is 1 = 2 1=2 ?

Algebra Level 1

1 1 = 1 1 ( 1 ) 1 1 = 1 1 ( 2 ) 1 1 = 1 1 ( 3 ) i 1 = 1 i ( 4 ) i 2 = 1 2 i ( 5 ) i 2 + 3 2 i = 1 2 i + 3 2 i ( 6 ) i ( i 2 + 3 2 i ) = i ( 1 2 i + 3 2 i ) ( 7 ) i 2 2 + 3 i 2 i = i 2 i + 3 i 2 i ( 8 ) 1 2 + 3 2 = 1 2 + 3 2 ( 9 ) 1 = 2 \begin{aligned} \dfrac{-1}{1}=&\dfrac{1}{-1} \quad & \ldots(1) \\ \sqrt{\dfrac{-1}{1}}=&\sqrt{\dfrac{1}{-1}} \quad & \ldots (2) \\ \dfrac{\sqrt{-1}}{\sqrt{1}}=& \dfrac{\sqrt{1}}{\sqrt{-1}} \quad &\ldots (3) \\ \dfrac{i}{1}=&\dfrac{1}{i} \quad & \ldots(4) \\ \dfrac{i}{2}=&\dfrac{1}{2i} \quad & \ldots(5) \\ \dfrac{i}{2}+\dfrac{3}{2i}=&\dfrac{1}{2i}+\dfrac{3}{2i} \quad &\ldots(6) \\ i\cdot\left(\dfrac{i}{2}+\dfrac{3}{2i}\right)=& i \cdot\left( \dfrac{1}{2i}+\dfrac{3}{2i}\right) \quad & \ldots(7) \\ \dfrac{i^2}{2}+\dfrac{3i}{2i}=& \dfrac{i}{2i}+\dfrac{3i}{2i} \quad & \ldots(8) \\ \dfrac{-1}{2}+\dfrac{3}{2}=& \dfrac{1}{2}+\dfrac{3}{2} \quad & \ldots (9) \\ 1=&2 \end{aligned}

Consider the steps above.

In which step is the mistake committed?

Note : i = 1 i=\sqrt{-1} in equation ( 9 ) (9) and the last one we assume to work out the L.H.S. and the R.H.S. separately.


Source :Spencer,1998

5 1 3 6 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Udaiwal
Feb 23, 2016

a b = a b \huge \sqrt{\dfrac{a}{b}} =\dfrac{\sqrt{a}}{\sqrt{b}} The above statement holds true only if either a a and b b are positive or a a and b b are both negative.

Here, one number is positive and other is negative. So, the statement must hold true in this case, as well.

Soha Farhin Pine Pine - 4 years, 4 months ago

Log in to reply

Both are positive or both are negative.

Oluwatobi Alafin - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...