Mathematics!!!

How many ways can we rearrange the letters in M A T H E M A T I C S MATHEMATICS , such that the vowels remain unchanged?


  • For example: T A H M E C A S I M T TAHMECASIMT and H A T C E S A M I T M HATCESAMITM are two arranges for this condition.
7 ! 2 \frac{7!}{2} 7 ! 4 \frac{7!}{4} None of these 8 ! 2 \frac{8!}{2} 5 ! 2 \frac{5!}{2} 11 ! 2 ! × 2 ! × 2 ! \frac{11!}{2!\times{2!}\times{2!}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Oct 31, 2017

In M A T H E M A T I C S MATHEMATICS total letter is 11 11 where 2 M , 2 T 2M,2T and 3 v o w e l 3 vowel .

without arranging vowels, total arrange is: 7 ! 2 ! × 2 ! without vowel, total letter is 7 where 2M and 2T = 7 ! 4 \frac{7!}{2!\times{2!}} \quad \boxed{\color{#D61F06}\text{without vowel, total letter is 7 where 2M and 2T}} \\=\boxed{\frac{7!}{4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...