A calculus problem by Rudraksh Shukla

Calculus Level 5

0 π / 2 ( sin x + a cos x ) 3 d x 4 a π 2 0 π / 2 x cos x d x = 2 \large \int^{\pi /2}_0 (\sin{x}+a\cos{x})^3\,dx - \dfrac{4a}{\pi-2} \int^{\pi /2 }_0 x\cos{x} \,dx = 2

If a 1 , a 2 a_1, a_2 and a 3 a_3 are the three values of a a which satisfy the equation above, then find the value of 1000 ( a 1 2 + a 2 2 + a 3 2 ) 1000 \left(a^2_1+a^2_2+a^2_3\right) .


The answer is 5250.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 12, 2017

0 π 2 ( sin x + a cos x ) 3 d x 4 a π 2 0 π 2 x cos x d x = 2 By integration by parts 0 π 2 ( 1 + a 2 ) 3 2 sin 3 ( x + ϕ ) d x 4 a π 2 ( x sin x 0 π 2 0 π 2 sin x d x ) = 2 where ϕ = tan 1 a ( 1 + a 2 ) 3 2 0 π 2 sin 3 ( π 2 x + ϕ ) d x 4 a π 2 ( π 2 + cos x 0 π 2 ) = 2 By identity a b f ( x ) d x = a b f ( a + b x ) d x ( 1 + a 2 ) 3 2 0 π 2 cos 3 ( x ϕ ) d x 4 a π 2 ( π 2 1 ) = 2 Let θ = x ϕ d θ = d x ( 1 + a 2 ) 3 2 ϕ π 2 ϕ cos 3 θ d θ 2 a = 2 ( 1 + a 2 ) 3 2 ϕ π 2 ϕ ( 1 sin 2 θ ) cos θ d θ 2 a = 2 Let u = sin θ d u = cos θ d θ ( 1 + a 2 ) 3 2 sin ϕ cos ϕ ( 1 u 2 ) d u 2 a = 2 ( 1 + a 2 ) 3 2 [ u u 3 3 ] a / 1 + a 2 1 / 1 + a 2 2 a = 2 ( 1 + a 2 ) 3 2 [ 1 + a 1 + a 2 1 + a 3 3 ( 1 + a 2 ) 3 2 ] 2 a = 2 ( 1 + a 2 ) ( 1 + a ) 1 3 ( 1 + a 3 ) 2 a 2 = 0 2 x 3 + 3 x 2 3 x 4 = 0 ( x + 1 ) ( 2 x 2 + x 4 ) = 0 \begin{aligned} \int_0^\frac \pi 2 (\sin x + a\cos x)^3 dx - \frac {4a}{\pi -2} \color{#3D99F6} \int_0^\frac \pi 2 x\cos x\ dx & = 2 & \small \color{#3D99F6} \text{By integration by parts} \\ \int_0^\frac \pi 2 \left(1+a^2\right)^\frac 32 \sin^3 ({\color{#D61F06}x + \phi}) dx - \frac {4a}{\pi -2} \color{#3D99F6} \left(x \sin x \bigg|_0^\frac \pi 2 - \int_0^\frac \pi 2 \sin x\ dx \right) & = 2 & \small \color{#D61F06} \text{where }\phi = \tan^{-1} a \\ \left(1+a^2\right)^\frac 32 \int_0^\frac \pi 2 \sin^3 \left({\color{#D61F06}\frac \pi 2 - x + \phi}\right) dx - \frac {4a}{\pi -2} \left(\frac \pi 2 + \cos x \ \bigg|_0^\frac \pi 2 \right) & = 2 & \small \color{#D61F06} \text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ \left(1+a^2\right)^\frac 32 \int_0^\frac \pi 2 \cos^3 (x - \phi) dx - \frac {4a}{\pi -2} \left(\frac \pi 2 -1 \right) & = 2 & \small \color{#3D99F6} \text{Let } \theta = x - \phi \implies d\theta = dx \\ \left(1+a^2\right)^\frac 32 \int_{-\phi}^{\frac \pi 2-\phi} \cos^3 \theta \ d\theta - 2a & = 2 \\ \left(1+a^2\right)^\frac 32 \int_{-\phi}^{\frac \pi 2-\phi} (1-\sin^2 \theta) \cos \theta \ d\theta - 2a & = 2 & \small \color{#3D99F6} \text{Let } u = \sin \theta \implies du = \cos \theta \ d\theta \\ \left(1+a^2\right)^\frac 32 \int_{-\sin \phi}^{\cos \phi} (1-u^2) \ du - 2a & = 2 \\ \left(1+a^2\right)^\frac 32 \left[u - \frac {u^3}3 \right]_{-a/\sqrt{1+a^2}}^{1/\sqrt{1+a^2}} - 2a & = 2 \\ \left(1+a^2\right)^\frac 32 \left[\frac {1+a}{\sqrt{1+a^2}} - \frac {1+a^3}{3\left(1+a^2\right)^\frac 32} \right] - 2a & = 2 \\ (1+a^2)(1+a) - \frac 13(1+a^3) - 2a - 2 & = 0 \\ 2x^3+3x^2-3x-4 & = 0 \\ (x+1)(2x^2+x-4) & = 0 \end{aligned}

Let a 1 = 1 a_1 = - 1 , then by Vieta's formula a 2 + a 3 = 1 2 a_2+a_3 = - \dfrac 12 and a 2 a 3 = 2 a_2a_3 = -2 . Then we have:

a 1 2 + a 2 2 + a 3 2 = 1 2 + ( a 2 + a 3 ) 2 2 a 2 a 3 = 1 + 1 4 + 4 = 5.25 1000 ( a 1 2 + a 2 2 + a 3 2 ) = 5250 \begin{aligned} a_1^2 + a_2^2 + a_3^2 & = 1^2 + (a_2+a_3)^2 - 2a_2a_3 \\ & = 1 + \frac 14 + 4 = 5.25 \\ \implies 1000(a_1^2 + a_2^2 + a_3^2) & = \boxed{5250} \end{aligned}

@Rudraksh Shukla Did you get the MATH joke from the minions?

Annie Li - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...