∫ 0 π / 2 ( sin x + a cos x ) 3 d x − π − 2 4 a ∫ 0 π / 2 x cos x d x = 2
If a 1 , a 2 and a 3 are the three values of a which satisfy the equation above, then find the value of 1 0 0 0 ( a 1 2 + a 2 2 + a 3 2 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Rudraksh Shukla Did you get the MATH joke from the minions?
Problem Loading...
Note Loading...
Set Loading...
∫ 0 2 π ( sin x + a cos x ) 3 d x − π − 2 4 a ∫ 0 2 π x cos x d x ∫ 0 2 π ( 1 + a 2 ) 2 3 sin 3 ( x + ϕ ) d x − π − 2 4 a ( x sin x ∣ ∣ ∣ ∣ 0 2 π − ∫ 0 2 π sin x d x ) ( 1 + a 2 ) 2 3 ∫ 0 2 π sin 3 ( 2 π − x + ϕ ) d x − π − 2 4 a ( 2 π + cos x ∣ ∣ ∣ ∣ 0 2 π ) ( 1 + a 2 ) 2 3 ∫ 0 2 π cos 3 ( x − ϕ ) d x − π − 2 4 a ( 2 π − 1 ) ( 1 + a 2 ) 2 3 ∫ − ϕ 2 π − ϕ cos 3 θ d θ − 2 a ( 1 + a 2 ) 2 3 ∫ − ϕ 2 π − ϕ ( 1 − sin 2 θ ) cos θ d θ − 2 a ( 1 + a 2 ) 2 3 ∫ − sin ϕ cos ϕ ( 1 − u 2 ) d u − 2 a ( 1 + a 2 ) 2 3 [ u − 3 u 3 ] − a / 1 + a 2 1 / 1 + a 2 − 2 a ( 1 + a 2 ) 2 3 [ 1 + a 2 1 + a − 3 ( 1 + a 2 ) 2 3 1 + a 3 ] − 2 a ( 1 + a 2 ) ( 1 + a ) − 3 1 ( 1 + a 3 ) − 2 a − 2 2 x 3 + 3 x 2 − 3 x − 4 ( x + 1 ) ( 2 x 2 + x − 4 ) = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 0 = 0 = 0 By integration by parts where ϕ = tan − 1 a By identity ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x Let θ = x − ϕ ⟹ d θ = d x Let u = sin θ ⟹ d u = cos θ d θ
Let a 1 = − 1 , then by Vieta's formula a 2 + a 3 = − 2 1 and a 2 a 3 = − 2 . Then we have:
a 1 2 + a 2 2 + a 3 2 ⟹ 1 0 0 0 ( a 1 2 + a 2 2 + a 3 2 ) = 1 2 + ( a 2 + a 3 ) 2 − 2 a 2 a 3 = 1 + 4 1 + 4 = 5 . 2 5 = 5 2 5 0