Maths

Algebra Level 2

For all x x in the domain of the function x + 1 x 3 x \dfrac{x+1}{x^3-x} , this function is equivalent to:

F. 1 x 2 1 x 3 \dfrac1{x^2} -\dfrac1{x^3}
G. 1 x 3 1 x \dfrac1{x^3} -\dfrac1x
H. 1 x 2 1 \dfrac1{x^2-1}
J. 1 x 2 x \dfrac1{x^2-x}
K. 1 x 3 \dfrac1{x^3}

H F G K J

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x + 1 x 3 x \Rightarrow \dfrac{x+1}{x^3-x}

x + 1 x ( x 2 1 ) \Rightarrow \dfrac{x+1}{x(x^2-1)}

x + 1 x ( x + 1 ) ( x 1 ) \Rightarrow \dfrac{x+1}{x(x+1)(x-1)}

1 x 2 x \Rightarrow \boxed{\dfrac{1}{x^2-x}}

Ondřej Chmelík
May 19, 2019

J is correct.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...