Matrix and Fibonacci number

Algebra Level 3

F n F_n is the n n th Fibonacci number, defined by the recurrence relation F n = F n 1 + F n 2 F_n=F_{n-1}+F_{n-2} with F 1 = F 2 = 1 F_1=F_2=1 . If n n is a perfect square and n > 4 n >4 , then

F 1 F 2 F n F n + 1 F n + 2 F 2 n F n n + 1 F n n + 2 F n = ? \large \begin{vmatrix} F_{1}&F_{2}&\cdots&F_{\sqrt{n}} \\ F_{\sqrt{n}+1}&F_{\sqrt{n}+2}&\cdots&F_{2\sqrt{n}} \\ \vdots&\vdots&&\vdots \\ F_{n-\sqrt{n}+1}&F_{n-\sqrt{n}+2}&\cdots&F_{n} \end{vmatrix} = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Oct 2, 2017

F 1 F 2 F n F n + 1 F n + 2 F 2 n F n n + 1 F n n + 2 F n \large \begin{vmatrix} F_{1}&F_{2}&\cdots&F_{\sqrt{n}} \\ F_{\sqrt{n}+1}&F_{\sqrt{n}+2}&\cdots&F_{2\sqrt{n}} \\ \vdots&\vdots&&\vdots \\ F_{n-\sqrt{n}+1}&F_{n-\sqrt{n}+2}&\cdots&F_{n} \end{vmatrix}

= F 1 F 2 F 3 F 2 F 1 F n F n + 1 F n + 2 F n + 3 F n + 2 F n + 1 F 2 n F n n + 1 F n n + 2 F n n + 3 F n n + 2 F n n + 1 F n = \begin{vmatrix} F_{1}&F_{2}&F_{3}-F_{2}-F_{1}&\cdots&F_{\sqrt{n}} \\ F_{\sqrt{n}+1}&F_{\sqrt{n}+2}&F_{\sqrt{n}+3}-F_{\sqrt{n}+2}-F_{\sqrt{n}+1}&\cdots&F_{2\sqrt{n}} \\ \vdots&\vdots&\vdots&&\vdots \\ F_{n-\sqrt{n}+1}&F_{n-\sqrt{n}+2}& F_{n-\sqrt{n}+3}- F_{n-\sqrt{n}+2}- F_{n-\sqrt{n}+1}&\cdots&F_{n} \end{vmatrix}

= F 1 F 2 0 F n F n + 1 F n + 2 0 F 2 n F n n + 1 F n n + 2 0 F n = \begin{vmatrix} F_{1}&F_{2}&0&\cdots&F_{\sqrt{n}} \\ F_{\sqrt{n}+1}&F_{\sqrt{n}+2}&0&\cdots&F_{2\sqrt{n}} \\ \vdots&\vdots&\vdots&&\vdots \\ F_{n-\sqrt{n}+1}&F_{n-\sqrt{n}+2}&0&\cdots&F_{n} \end{vmatrix}

= 0 = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...