Matrix and geometric sequence

Algebra Level 2

If g 1 , g 2 , g 3 , , g n g_{1} , g_{2} , g_{3} , \cdots , g_{n} is a geometric sequence where n n is a perfect square and n > 1 n>1 , then

g 1 g 2 g n g n + 1 g n + 2 g 2 n g n n + 1 g n n + 2 g n = ? \large \begin{vmatrix} g_{1}&g_{2}&\cdots&g_{\sqrt{n}} \\ g_{\sqrt{n}+1}&g_{\sqrt{n}+2}&\cdots&g_{2\sqrt{n}} \\ \vdots&\vdots&&\vdots \\ g_{n-\sqrt{n}+1}&g_{n-\sqrt{n}+2}&\cdots&g_{n} \end{vmatrix} = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anirudh Sreekumar
Sep 29, 2017

The n n th term of a G . P G.P is given by a n = a 1 × r n 1 a_{n}=a_{1}\times r^{n-1}

Let, a 1 = a a_{1}=a

Substituting for the terms in the determinant we get,

I = g 1 g 2 g n g n + 1 g n + 2 g 2 n g n n + 1 g n n + 2 g n = a a × r a × r n 1 a × r n a × r n + 1 a × r 2 n 1 a × r n n a × r n n + 1 a × r n 1 = r n a a × r a × r n 1 a a × r a × r n 1 a × r n n a × r n n + 1 a × r n 1 \large I=\large \begin{vmatrix} g_{1}&g_{2}&\cdots&g_{\sqrt{n}} \\ g_{\sqrt{n}+1}&g_{\sqrt{n}+2}&\cdots&g_{2\sqrt{n}} \\ \vdots&\vdots&&\vdots \\ g_{n-\sqrt{n}+1}&g_{n-\sqrt{n}+2}&\cdots&g_{n} \end{vmatrix} =\large \begin{vmatrix} a&a\times r&\cdots&a\times r^{\sqrt{n}-1} \\ a\times r^{\sqrt{n}}&a\times r^{\sqrt{n}+1}&\cdots&a\times r^{2\sqrt{n}-1} \\ \vdots&\vdots&&\vdots \\ a\times r^{n-\sqrt{n}}&a\times r^{n-\sqrt{n}+1}&\cdots&a\times r^{n-1} \end{vmatrix} =r^{\sqrt{n}} \large \begin{vmatrix} a&a\times r&\cdots&a\times r^{\sqrt{n}-1} \\ a&a\times r&\cdots&a\times r^{\sqrt{n}-1} \\ \vdots&\vdots&&\vdots \\ a\times r^{n-\sqrt{n}}&a\times r^{n-\sqrt{n}+1}&\cdots&a\times r^{n-1} \end{vmatrix}

Since Row 1 and Row 2 are identical,by properties of determinants we have

I = 0 \large I=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...