\( Let\,\,f\left( x \right) =\left( p_1-x \right) \left( p_2-x \right) ...\left( p_n-x \right) \,\,and\,\,let \\ \varDelta _n=\,\,\left| \begin{matrix} p_1& a& a& a& ...& a& a\\ b& p_2& a& a& ...& a& a\\ b& b& p_3& a& ...& a& a\\ b& b& b& p_4& ...& a& a\\ \vdots& \vdots& \vdots& \vdots& & \vdots& \vdots\\ b& b& b& b& ...& p_{n-1}& a\\ b& b& b& b& ...& b& p_n\\ \end{matrix} \right| \\ If\,\,a\ne b\,\,then \\ \varDelta _n=\frac{Xf\left( a \right) -Yf\left( b \right)}{b-a} \\ What\,\,is\,\,X+Y\,\,? \\
\)
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you explain more detail the process from Δ n = ( p n − a ) Δ n − 1 + a f n − 1 ( b ) to Δ n = b − a b f n ( a ) − a f n ( b ) ? Thank you very much
Log in to reply
Δ 1 = p 1 = b − a b f 1 ( a ) − a f 1 ( b ) , so the result holds for n = 1 . If Δ n − 1 = b − a b f n − 1 ( a ) − a f n − 1 ( b ) then Δ n = ( p n − a ) [ b − a b f n − 1 ( a ) − a f n − 1 ( b ) ] + a f n − 1 ( b ) = b − a b f n ( a ) − a f n ( b ) and so the result follows by induction.
Problem Loading...
Note Loading...
Set Loading...
An elementary row operation (subtract the last but one row from the last) gives Δ n = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ p 1 b b b ⋮ b b a p 2 b b ⋮ b b a a p 3 b ⋮ b b a a a p 4 ⋮ b b . . . . . . . . . . . . . . . . . . a a a a ⋮ p n − 1 b a a a a ⋮ a p n ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ p 1 b b b ⋮ b 0 a p 2 b b ⋮ b 0 a a p 3 b ⋮ b 0 a a a p 4 ⋮ b 0 . . . . . . . . . . . . . . . . . . a a a a ⋮ p n − 1 b − p n − 1 a a a a ⋮ a p n − a ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ and hence Δ n = ( p n − a ) Δ n − 1 + ( p n − 1 − b ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ p 1 b b b ⋮ b b a p 2 b b ⋮ b b a a p 3 b ⋮ b b a a a p 4 ⋮ b b . . . . . . . . . . . . . . . . . . a a a a ⋮ p n − 2 b a a a a ⋮ a a ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ where the last determinant is of an ( n − 1 ) × ( n − 1 ) matrix. Further row operations (subtracting the last row from all the others) give ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ p 1 b b b ⋮ b b a p 2 b b ⋮ b b a a p 3 b ⋮ b b a a a p 4 ⋮ b b . . . . . . . . . . . . . . . . . . a a a a ⋮ p n − 2 b a a a a ⋮ a a ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ p 1 − b 0 0 0 ⋮ 0 b a − b p 2 − b 0 0 ⋮ 0 b a − b a − b p 3 − b 0 ⋮ 0 b a − b a − b a − b p 4 − b ⋮ 0 b . . . . . . . . . . . . . . . . . . a − b a − b a − b a − b ⋮ p n − 2 − b b 0 0 0 0 ⋮ 0 a ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = a f n − 2 ( b ) so we have the recurrence relation Δ n = ( p n − a ) Δ n − 1 + a f n − 1 ( b ) It is now an easy induction to show that Δ n = b − a b f n ( a ) − a f n ( b ) for all n ≥ 1 , making the answer a + b .