Matrix Eigenvalues

Algebra Level 3

Consider the matrix:

( 1 1 0 0 1 1 1 0 1 ) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}

If the matrix eigenvalues are ( λ 1 , λ 2 , λ 3 ) (\lambda_1,\lambda_2,\lambda_3) , determine the following ratio.

λ 1 + λ 2 + λ 3 λ 1 + λ 2 + λ 3 \frac{|\lambda_1 + \lambda_2 + \lambda_3|}{|\lambda_1| + |\lambda_2| + |\lambda_3|}


The answer is 0.866.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Sep 12, 2019

Computing d e t ( A I λ ) = 0 det(A-I\lambda) = 0 (where A A is the 3x3 matrix above) yields the following characteristic equation:

( 1 λ ) ( ( 1 λ ) 2 0 ) ( 1 ) ( 0 1 ) + ( 0 ) ( 0 + 1 ) = 0 ; (1-\lambda)((1-\lambda)^2 - 0) - (-1)(0 - 1) + (0)(0 + 1) = 0;

or ( 1 λ ) 3 1 = 0 ; (1-\lambda)^3 - 1 = 0;

or 3 λ + 3 λ 2 λ 3 = 0 -3\lambda + 3\lambda^{2} - \lambda^{3} = 0 ;

or λ ( 3 + 3 λ λ 2 ) = 0 ; \lambda(-3 + 3\lambda - \lambda^{2}) = 0;

or λ = 0 , 3 ± 3 i 2 \lambda = 0, \frac{3 \pm \sqrt{3}i}{2} .

Hence: λ 1 + λ 2 + λ 3 λ 1 + λ 2 + λ 3 = 0 + 2 ( 3 / 2 ) 0 + 2 ( 3 / 2 ) 2 + ( 3 / 2 ) 2 = 3 2 3 = 3 2 . \frac{|\lambda_{1} + \lambda_{2} + \lambda_{3}|}{|\lambda_{1}| + |\lambda_{2}| + |\lambda_{3}|} = \frac{|0 + 2(3/2)|}{|0| + 2|\sqrt{(3/2)^2 + (\sqrt{3}/2)^2}|} = \frac{|3|}{2|\sqrt{3}|} = \boxed{\frac{\sqrt{3}}{2}}.

Krishna Karthik
Apr 13, 2020

The sum of the Eigenvalues is the Trace of the matrix, given by adding the diagonals from top left to bottom right. Then, after finding the bottom part of the ratio (adding the absolute value of the complex Eigenvalues), you can find the ratio.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...