Matrix Problem for year 2021!

Algebra Level pending

A A is an n × n n \times n matrix so that: A = [ 2 a 1 0 0 0 0 0 a 2 2 a 1 0 0 0 0 0 a 2 2 a 1 0 0 0 0 0 0 0 a 2 2 a 1 0 0 0 0 0 a 2 2 a ] A=\begin{bmatrix} 2a & 1 & 0 & 0 & \cdots & 0 & 0 & 0\\ a^2 & 2a & 1 & 0 & \cdots & 0 & 0 & 0\\ 0 & a^2 & 2a & 1 & \cdots & 0 & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & a^2 & 2a & 1\\ 0 & 0 & 0 & 0 & \cdots & 0 & a^2 & 2a\\ \end{bmatrix}

Where a 0 a \neq 0 , X = [ x 1 x 2 x 3 x n ] T \overrightarrow{X}=\begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_n\end{bmatrix}^T , b = [ 1 0 0 0 ] T \overrightarrow{b}=\begin{bmatrix} 1 & 0 & 0 & \cdots & 0\end{bmatrix}^T .

If A X = b A\overrightarrow{X}=\overrightarrow{b} , find 1 x 1 \dfrac{1}{x_1} when n = 2020 , a = 2020 n=2020, a=2020 .


The answer is 2021.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniele Rosmondi
Dec 29, 2020

Start from the n n -th row:

a 2 x n 1 + 2 a x n = 0 x n = 1 2 a x n 1 a^2x_{n-1}+2ax_n=0\ \ \Rightarrow x_n=-\frac 12 ax_{n-1}

Now, consider the ( n 1 ) (n-1) -th row and then substitute the expression obtained for x n x_n :

a 2 x n 2 + 2 a x n 1 + x n = 0 a 2 x n 2 + 2 a x n 1 1 2 a x n 1 = 0 x n 1 = 2 3 a x n 2 a^2x_{n-2}+2ax_{n-1}+x_n=0\\ a^2x_{n-2}+2ax_{n-1}-\frac 12 ax_{n-1}=0\\ \Rightarrow x_{n-1}=-\frac 23ax_{n-2}

Going on, or by induction on k k , we see that

x n ( k 1 ) = k k + 1 a x n k x_{n-(k-1)}=-\frac k{k+1} ax_{n-k}

In particular, for k = n 1 k=n-1 ,

x 2 = n 1 n a x 1 x_{2}=-\frac {n-1} {n} ax_{1}

Finally, consider the 1st row and substitute the expression obtained for x 2 x_2 :

2 a x 1 + x 2 = 1 2 a x 1 n 1 n a x 1 = 1 x 1 = n a ( n + 1 ) 2ax_1+x_2=1\\ 2ax_1-\frac {n-1} {n} ax_{1}=1\\ \Rightarrow x_1=\frac n{a(n+1)}

Substitute given values to get

x 1 = 2020 2020 ( 2020 + 1 ) = 1 2021 \displaystyle x_1=\frac {2020} {2020(2020+1)} =\frac 1{2021}

and so 1 x 1 = 2021 \frac 1{x_1}=2021 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...