Matrix Reloaded

Algebra Level 4

Let A = ( 4 2 2 2 ) A = \left( \begin{matrix} 4 & 2 \\ 2 & 2 \end{matrix} \right) Evaluate n = 1 det ( 4 ( A 1 ) n ) \displaystyle \sum_{n = 1}^{\infty} \det (4(A^{-1})^{n}) The above expression has a closed form. Give your answer to 3 decimal places.


Inspiration


The answer is 5.33333333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

det ( A ) = 4 det ( A 1 ) = 1 4 \det(A) = 4 \Rightarrow \det(A^{-1}) = \frac{1}{4} . Due to the property det ( A B ) = det ( A ) det ( B ) \det(A\cdot B) = \det(A)\cdot \det(B) it can be proved by induction that det ( ( A 1 ) n ) = ( 1 4 ) n , n 1 \det((A^{-1})^n) = \left(\frac{1}{4}\right)^n, \space \forall n \ge 1 and det ( 4 ( A 1 ) n ) = 16 ( 1 4 ) n , n 1 \det(4(A^{-1})^n) = 16\cdot \left(\frac{1}{4}\right)^n, \space \forall n \ge 1 . Therefore, n = 1 det ( 4 ( A 1 ) n ) = 16 n = 1 ( 1 4 ) n = 16 3 5.33333333... \displaystyle \sum_{n = 1}^{\infty} \det(4(A^{-1})^n) = 16\cdot \sum_{n = 1}^{\infty} \left(\frac{1}{4}\right)^n = \frac{16}{3} \approx 5.33333333...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...