Let Evaluate The above expression has a closed form. Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
det ( A ) = 4 ⇒ det ( A − 1 ) = 4 1 . Due to the property det ( A ⋅ B ) = det ( A ) ⋅ det ( B ) it can be proved by induction that det ( ( A − 1 ) n ) = ( 4 1 ) n , ∀ n ≥ 1 and det ( 4 ( A − 1 ) n ) = 1 6 ⋅ ( 4 1 ) n , ∀ n ≥ 1 . Therefore, n = 1 ∑ ∞ det ( 4 ( A − 1 ) n ) = 1 6 ⋅ n = 1 ∑ ∞ ( 4 1 ) n = 3 1 6 ≈ 5 . 3 3 3 3 3 3 3 3 . . .